Tunable topologically driven Fermi arc van Hove singularities

被引:7
|
作者
Sanchez, Daniel S. S. [1 ,2 ]
Cochran, Tyler A. A. [1 ]
Belopolski, Ilya [1 ,3 ]
Cheng, Zi-Jia [1 ]
Yang, Xian P. [1 ]
Liu, Yiyuan [4 ]
Hou, Tao [5 ]
Xu, Xitong [4 ]
Manna, Kaustuv [6 ,7 ]
Shekhar, Chandra [6 ]
Yin, Jia-Xin [1 ]
Borrmann, Horst [6 ]
Chikina, Alla [8 ]
Denlinger, Jonathan D. D. [9 ]
Strocov, Vladimir N. N. [8 ]
Xie, Weiwei [10 ]
Felser, Claudia [6 ]
Jia, Shuang [4 ]
Chang, Guoqing [5 ]
Hasan, M. Zahid [1 ,11 ,12 ]
机构
[1] Princeton Univ, Dept Phys, Lab Topol Quantum Matter & Adv Spect B7, Princeton, NJ 08544 USA
[2] Univ Copenhagen, Niels Bohr Inst, Ctr Quantum Devices, Copenhagen, Denmark
[3] RIKEN Ctr Emergent Matter Sci CEMS, Wako, Japan
[4] Peking Univ, Int Ctr Quantum Mat, Sch Phys, Beijing, Peoples R China
[5] Nanyang Technol Univ, Sch Phys & Math Sci, Div Phys & Appl Phys, Singapore, Singapore
[6] Max Planck Inst Chem Phys Solids, Dresden, Germany
[7] Indian Inst Technol Delhi, Dept Phys, Hauz Khas, India
[8] Paul Scherrer Inst, Swiss Light Source, Villigen, Switzerland
[9] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA USA
[10] Michigan State Univ, Dept Chem, E Lansing, MI USA
[11] Princeton Univ, Princeton Inst Sci & Technol Mat, Princeton, NJ 08544 USA
[12] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
基金
美国国家科学基金会; 新加坡国家研究基金会;
关键词
GRAPHENE; PHASE; SUPERCONDUCTIVITY; PHYSICS;
D O I
10.1038/s41567-022-01892-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The classification scheme of electronic phases uses two prominent paradigms: correlations and topology. Electron correlations give rise to superconductivity and charge density waves, while the quantum geometric Berry phase gives rise to electronic topology. The intersection of these two paradigms has initiated an effort to discover electronic instabilities at or near the Fermi level of topological materials. Here we identify the electronic topology of chiral fermions as the driving mechanism for creating van Hove singularities that host electronic instabilities in the surface band structure. We observe that the chiral fermion conductors RhSi and CoSi possess two types of helicoid arc van Hove singularities that we call type I and type II. In RhSi, the type I variety drives a switching of the connectivity of the helicoid arcs at different energies. In CoSi, we measure a type II intra-helicoid arc van Hove singularity near the Fermi level. Chemical engineering methods are able to tune the energy of these singularities. Finally, electronic susceptibility calculations allow us to visualize the dominant Fermi surface nesting vectors of the helicoid arc singularities, consistent with recent observations of surface charge density wave ordering in CoSi. This suggests a connection between helicoid arc singularities and surface charge density waves. Strong correlations between electrons in topological surface states drive the formation of surface van Hove singularities. These may be linked to charge density waves in the surface states.
引用
收藏
页码:682 / 688
页数:18
相关论文
共 50 条
  • [31] Effects of Van Hove singularities on the upper critical field
    Dias, RG
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2000, 12 (42) : 9053 - 9060
  • [32] Origin of van Hove singularities in twisted bilayer graphene
    Ribeiro, H. B.
    Sato, K.
    Eliel, G. S. N.
    de Souza, E. A. T.
    Lu, Chun-Chieh
    Chiu, Po-Wen
    Saito, R.
    Pimenta, M. A.
    [J]. CARBON, 2015, 90 : 138 - 145
  • [33] Spectral Properties of Dirac Billiards at the van Hove Singularities
    Dietz, B.
    Klaus, T.
    Miski-Oglu, M.
    Richter, A.
    Wunderle, M.
    Bouazza, C.
    [J]. PHYSICAL REVIEW LETTERS, 2016, 116 (02)
  • [34] Bilayer Kagome Borophene with Multiple van Hove Singularities
    Gao, Qian
    Yan, Qimin
    Hu, Zhenpeng
    Chen, Lan
    [J]. ADVANCED SCIENCE, 2023,
  • [35] Van Hove singularities in Probability Density Functions of scalars
    Meunier, Patrice
    Villermaux, Emmanuel
    [J]. COMPTES RENDUS MECANIQUE, 2007, 335 (03): : 162 - 167
  • [37] Observation of Van Hove singularities in twisted graphene layers
    Li, Guohong
    Luican, A.
    Lopes dos Santos, J. M. B.
    Castro Neto, A. H.
    Reina, A.
    Kong, J.
    Andrei, E. Y.
    [J]. NATURE PHYSICS, 2010, 6 (02) : 109 - 113
  • [38] Fermi surface and van hove singularities in the itinerant metamagnet Sr3Ru2O7
    Tamai, A.
    Allan, M. P.
    Mercure, J. F.
    Meevasana, W.
    Dunkel, R.
    Lu, D. H.
    Perry, R. S.
    Mackenzie, A. P.
    Singh, D. J.
    Shen, Z. -X.
    Baumberger, F.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 101 (02)
  • [39] The role of Van Hove singularities in disorder induced Raman scattering
    Kürti, J
    Koltai, J
    Zólyomi, V
    [J]. ELECTRONIC PROPERTIES OF NOVEL NANOSTRUCTURES, 2005, 786 : 416 - 419
  • [40] Disentangling boson peaks and Van Hove singularities in a model glass
    Wang, Yinqiao
    Hong, Liang
    Wang, Yujie
    Schirmacher, Walter
    Zhang, Jie
    [J]. PHYSICAL REVIEW B, 2018, 98 (17)