Contrastive Hierarchical Clustering

被引:9
|
作者
Znalezniak, Michal [1 ]
Rola, Przemyslaw [2 ,4 ]
Kaszuba, Patryk [3 ]
Tabor, Jacek [4 ]
Smieja, Marek [4 ]
机构
[1] Adv Micro Devices Inc, Santa Clara, CA USA
[2] Cracow Univ Econ, Inst Quantitat Methods Social Sci, Krakow, Poland
[3] Adam Mickiewicz Univ, Fac Math & Comp Sci, Poznan, Poland
[4] Jagiellonian Univ, Fac Math & Comp Sci, Krakow, Poland
关键词
Hierarchical clustering; Contrastive learning; Deep embedding clustering;
D O I
10.1007/978-3-031-43412-9_37
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep clustering has been dominated by flat models, which split a dataset into a predefined number of groups. Although recent methods achieve an extremely high similarity with the ground truth on popular benchmarks, the information contained in the flat partition is limited. In this paper, we introduce CoHiClust, a Contrastive Hierarchical Clustering model based on deep neural networks, which can be applied to typical image data. By employing a self-supervised learning approach, CoHiClust distills the base network into a binary tree without access to any labeled data. The hierarchical clustering structure can be used to analyze the relationship between clusters, as well as to measure the similarity between data points. Experiments demonstrate that CoHiClust generates a reasonable structure of clusters, which is consistent with our intuition and image semantics. Moreover, it obtains superior clustering accuracy on most of the image datasets compared to the state-of-the-art flat clustering models. Our implementation is available at https:// github.com/MichalZnalezniak/Contrastive-Hierarchical-Clustering.
引用
收藏
页码:627 / 643
页数:17
相关论文
共 50 条
  • [41] Compressed Hierarchical Clustering
    Baruch, Gilad
    Klein, Shmuel T.
    Shapira, Dana
    2018 DATA COMPRESSION CONFERENCE (DCC 2018), 2018, : 399 - 399
  • [42] Hierarchical Means Clustering
    Maurizio Vichi
    Carlo Cavicchia
    Patrick J. F. Groenen
    Journal of Classification, 2022, 39 : 553 - 577
  • [43] Complementary hierarchical clustering
    Nowak, Gen
    Tibshirani, Robert
    BIOSTATISTICS, 2008, 9 (03) : 467 - 483
  • [44] HIERARCHICAL TRIANGULAR CLUSTERING
    DUNNRANK.P
    BEHAVIORAL SCIENCE, 1972, 17 (06): : 553 - &
  • [45] HIERARCHICAL CLUSTERING SCHEMES
    JOHNSON, SC
    PSYCHOMETRIKA, 1967, 32 (03) : 241 - 254
  • [46] Personalized hierarchical clustering
    Bade, Korinna
    Nuernberger, Andreas
    2006 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE, (WI 2006 MAIN CONFERENCE PROCEEDINGS), 2006, : 181 - +
  • [47] Belief hierarchical clustering
    Maalel, Wiem
    Zhou, Kuang
    Martin, Arnaud
    Elouedi, Zied
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2014, 8764 : 68 - 76
  • [48] Hierarchical spherical clustering
    Torra, Vicen
    Miyamoto, Sadaaki
    International Journal of Uncertainty, Fuzziness and Knowldege-Based Systems, 2002, 10 (02): : 157 - 172
  • [49] Towards hierarchical clustering
    Levin, Mark Sh.
    COMPUTER SCIENCE - THEORY AND APPLICATIONS, 2007, 4649 : 205 - 215
  • [50] Hierarchical adaptive clustering
    Serban, Gabriela
    Campan, Alina
    INFORMATICA, 2008, 19 (01) : 101 - 112