Contrastive Hierarchical Clustering

被引:9
|
作者
Znalezniak, Michal [1 ]
Rola, Przemyslaw [2 ,4 ]
Kaszuba, Patryk [3 ]
Tabor, Jacek [4 ]
Smieja, Marek [4 ]
机构
[1] Adv Micro Devices Inc, Santa Clara, CA USA
[2] Cracow Univ Econ, Inst Quantitat Methods Social Sci, Krakow, Poland
[3] Adam Mickiewicz Univ, Fac Math & Comp Sci, Poznan, Poland
[4] Jagiellonian Univ, Fac Math & Comp Sci, Krakow, Poland
关键词
Hierarchical clustering; Contrastive learning; Deep embedding clustering;
D O I
10.1007/978-3-031-43412-9_37
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep clustering has been dominated by flat models, which split a dataset into a predefined number of groups. Although recent methods achieve an extremely high similarity with the ground truth on popular benchmarks, the information contained in the flat partition is limited. In this paper, we introduce CoHiClust, a Contrastive Hierarchical Clustering model based on deep neural networks, which can be applied to typical image data. By employing a self-supervised learning approach, CoHiClust distills the base network into a binary tree without access to any labeled data. The hierarchical clustering structure can be used to analyze the relationship between clusters, as well as to measure the similarity between data points. Experiments demonstrate that CoHiClust generates a reasonable structure of clusters, which is consistent with our intuition and image semantics. Moreover, it obtains superior clustering accuracy on most of the image datasets compared to the state-of-the-art flat clustering models. Our implementation is available at https:// github.com/MichalZnalezniak/Contrastive-Hierarchical-Clustering.
引用
收藏
页码:627 / 643
页数:17
相关论文
共 50 条
  • [11] Federated Momentum Contrastive Clustering
    Miao, Runxuan
    Koyuncu, Erdem
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2024, 15 (04)
  • [12] Contrastive deep embedded clustering
    Sheng, Guoshuai
    Wang, Qianqian
    Pei, Chengquan
    Gao, QuanXue
    NEUROCOMPUTING, 2022, 514 : 13 - 20
  • [13] Contrastive Kernel Subspace Clustering
    Zhang, Qian
    Kang, Zhao
    Xu, Zenglin
    Fu, Hongguang
    NEURAL INFORMATION PROCESSING, ICONIP 2023, PT V, 2024, 14451 : 399 - 410
  • [14] Deep Temporal Contrastive Clustering
    Ying Zhong
    Dong Huang
    Chang-Dong Wang
    Neural Processing Letters, 2023, 55 : 7869 - 7885
  • [15] Hierarchical Clustering via Sketches and Hierarchical Correlation Clustering
    Vainstein, Danny
    Chatziafratis, Vaggos
    Citovsky, Gui
    Rajagopalan, Anand
    Mahdian, Mohammad
    Azar, Yossi
    24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130 : 559 - +
  • [16] Cross-modal contrastive learning with multi-hierarchical tracklet clustering for multi object tracking
    Hong, Ru
    Yang, Jiming
    Cai, Zeyu
    Da, Feipeng
    PATTERN RECOGNITION LETTERS, 2025, 191 : 1 - 7
  • [17] Incremental Clustering for Hierarchical Clustering
    Narita, Kakeru
    Hochin, Teruhisa
    Nomiya, Hiroki
    2018 5TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE/ INTELLIGENCE AND APPLIED INFORMATICS (CSII 2018), 2018, : 102 - 107
  • [18] A contrastive hierarchical account of positional neutralization
    Spahr, Christopher
    LINGUISTIC REVIEW, 2014, 31 (3-4): : 551 - 585
  • [19] BYOL Network Based Contrastive Clustering
    Chen, Xuehao
    Zhou, Weidong
    Zhou, Jin
    Wang, Yingxu
    Han, Shiyuan
    Du, Tao
    Yang, Cheng
    Liu, Bowen
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT I, 2023, 14086 : 705 - 714
  • [20] Multilayer graph contrastive clustering network
    Liu, Liang
    Kang, Zhao
    Ruan, Jiajia
    He, Xixu
    INFORMATION SCIENCES, 2022, 613 : 256 - 267