Contrastive Hierarchical Clustering

被引:9
|
作者
Znalezniak, Michal [1 ]
Rola, Przemyslaw [2 ,4 ]
Kaszuba, Patryk [3 ]
Tabor, Jacek [4 ]
Smieja, Marek [4 ]
机构
[1] Adv Micro Devices Inc, Santa Clara, CA USA
[2] Cracow Univ Econ, Inst Quantitat Methods Social Sci, Krakow, Poland
[3] Adam Mickiewicz Univ, Fac Math & Comp Sci, Poznan, Poland
[4] Jagiellonian Univ, Fac Math & Comp Sci, Krakow, Poland
关键词
Hierarchical clustering; Contrastive learning; Deep embedding clustering;
D O I
10.1007/978-3-031-43412-9_37
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep clustering has been dominated by flat models, which split a dataset into a predefined number of groups. Although recent methods achieve an extremely high similarity with the ground truth on popular benchmarks, the information contained in the flat partition is limited. In this paper, we introduce CoHiClust, a Contrastive Hierarchical Clustering model based on deep neural networks, which can be applied to typical image data. By employing a self-supervised learning approach, CoHiClust distills the base network into a binary tree without access to any labeled data. The hierarchical clustering structure can be used to analyze the relationship between clusters, as well as to measure the similarity between data points. Experiments demonstrate that CoHiClust generates a reasonable structure of clusters, which is consistent with our intuition and image semantics. Moreover, it obtains superior clustering accuracy on most of the image datasets compared to the state-of-the-art flat clustering models. Our implementation is available at https:// github.com/MichalZnalezniak/Contrastive-Hierarchical-Clustering.
引用
收藏
页码:627 / 643
页数:17
相关论文
共 50 条
  • [31] Hierarchical spherical clustering
    Torra, V
    Miyamoto, S
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2002, 10 (02) : 157 - 172
  • [32] On validation of hierarchical clustering
    Mucha, Hans-Joachim
    ADVANCES IN DATA ANALYSIS, 2007, : 115 - 122
  • [33] TANGLES AND HIERARCHICAL CLUSTERING
    Fluck, Eva
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2024, 38 (01) : 75 - 92
  • [34] Robust Hierarchical Clustering
    Balcan, Maria-Florina
    Liang, Yingyu
    Gupta, Pramod
    JOURNAL OF MACHINE LEARNING RESEARCH, 2014, 15 : 3831 - 3871
  • [35] Bias and hierarchical clustering
    Coles, P
    CLUSTERING AT HIGH REDSHIFT, 1999, 200 : 129 - 133
  • [36] Contrastive Hierarchical Gating Networks for Rating Prediction
    Ma, Jingwei
    Wen, Jiahui
    Huang, Chenglong
    Zhong, Mingyang
    Wang, Lu
    Zhang, Guangda
    NEURAL INFORMATION PROCESSING, ICONIP 2023, PT III, 2024, 14449 : 424 - 446
  • [37] Belief Hierarchical Clustering
    Maalel, Wiem
    Zhou, Kuang
    Martin, Arnaud
    Elouedi, Zied
    BELIEF FUNCTIONS: THEORY AND APPLICATIONS (BELIEF 2014), 2014, 8764 : 68 - 76
  • [38] Hierarchical clustering in astronomy
    Yu, Heng
    Hou, Xiaolan
    ASTRONOMY AND COMPUTING, 2022, 41
  • [39] Bias and hierarchical clustering
    Coles, P
    Melott, AL
    Munshi, D
    ASTROPHYSICAL JOURNAL, 1999, 521 (01): : L5 - L8
  • [40] Video Moment Retrieval with Hierarchical Contrastive Learning
    Zhang, Bolin
    Yang, Chao
    Jiang, Bin
    Zhou, Xiaokang
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022,