Data-driven Digital Lighting Design for Residential Indoor Spaces

被引:2
|
作者
Ren, Haocheng [1 ]
Fan, Hangming [1 ]
Wang, Rui [1 ]
Huo, Yuchi [2 ]
Tang, Rui [3 ]
Wang, Lei [4 ]
Bao, Hujun [1 ]
机构
[1] Zhejiang Univ, State Key Lab CAD&CG, 866 Yuhangtang Rd, Hangzhou 310058, Zhejiang, Peoples R China
[2] Zhejiang Lab, 1 Kechuang Ave, Hangzhou 311121, Zhejiang, Peoples R China
[3] Manycore Tech Inc, KooLab, 515 Yuhangtang Rd, Hangzhou 310000, Zhejiang, Peoples R China
[4] RaysEngine Tech Inc, 2301 Yuhangtang Rd, Hangzhou 311100, Zhejiang, Peoples R China
来源
ACM TRANSACTIONS ON GRAPHICS | 2023年 / 42卷 / 03期
关键词
Lighting design; interior design; data-driven approach; neural network; deep learning; INTERFACE;
D O I
10.1145/3582001
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Conventionally, interior lighting design is technically complex yet challenging and requires professional knowledge and aesthetic disciplines of designers. This article presents a new digital lighting design framework for virtual interior scenes, which allows novice users to automatically obtain lighting layouts and interior rendering images with visually pleasing lighting effects. The proposed framework utilizes neural networks to retrieve and learn underlying design guidelines and the principles beneath the existing lighting designs, e.g., a newly constructed dataset of 6k 3D interior scenes from professional designers with dense annotations of lights. With a 3D furniture-populated indoor scene as the input, the framework takes two stages to perform lighting design: (1) lights are iteratively placed in the room; (2) the colors and intensities of the lights are optimized by an adversarial scheme, resulting in lighting designs with aesthetic lighting effects. Quantitative and qualitative experiments show that the proposed framework effectively learns the guidelines and principles and generates lighting designs that are preferred over the rule-based baseline and comparable to those of professional human designers.
引用
下载
收藏
页数:18
相关论文
共 50 条
  • [31] The JCE Data-Driven Exercises Digital Collection
    Grubbs, W. Tandy
    JOURNAL OF CHEMICAL EDUCATION, 2009, 86 (06) : 763 - 764
  • [32] Data-Driven Production because of Digital Platforms
    Giese T.
    Hock F.
    Meldt L.
    Herrmann J.
    Wünschel W.
    Metternich J.
    Anderl R.
    Schleich B.
    ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb, 119 (05): : 366 - 371
  • [33] Data-Driven Digital Therapeutics: The Path Forward
    Wiederhold, Brenda K.
    CYBERPSYCHOLOGY BEHAVIOR AND SOCIAL NETWORKING, 2021, 24 (10) : 631 - 632
  • [34] Curriculum Design - A Data-Driven Approach
    Chang, Jung-Kuei
    Tsao, Nai-Lung
    Kuo, Chin-Hwa
    Hsu, Hui-Huang
    PROCEEDINGS 2016 5TH IIAI INTERNATIONAL CONGRESS ON ADVANCED APPLIED INFORMATICS IIAI-AAI 2016, 2016, : 492 - 496
  • [35] A Framework for Data-Driven Automata Design
    Zhang, Yuanrui
    Chen, Yixiang
    Ma, Yujing
    REQUIREMENTS ENGINEERING IN THE BIG DATA ERA, 2015, 558 : 33 - 47
  • [36] Data-driven design of soft sensors
    James T. Glazar
    Vivek B. Shenoy
    Nature Machine Intelligence, 2022, 4 : 194 - 195
  • [37] Data-driven design of molecular nanomagnets
    Duan, Yan
    Rosaleny, Lorena E.
    Coutinho, Joana T.
    Gimenez-Santamarina, Silvia
    Scheie, Allen
    Baldovi, Jose J.
    Cardona-Serra, Salvador
    Gaita-Arino, Alejandro
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [38] Data-driven design of molecular nanomagnets
    Yan Duan
    Lorena E. Rosaleny
    Joana T. Coutinho
    Silvia Giménez-Santamarina
    Allen Scheie
    José J. Baldoví
    Salvador Cardona-Serra
    Alejandro Gaita-Ariño
    Nature Communications, 13
  • [39] Data-driven computational protein design
    Frappier, Vincent
    Keating, Amy E.
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2021, 69 : 63 - 69
  • [40] Data-driven approaches to digital human modeling
    Magnenat-Thalmann, N
    Seo, H
    2ND INTERNATIONAL SYMPOSIUM ON 3D DATA PROCESSING, VISUALIZATION, AND TRANSMISSION, PROCEEDINGS, 2004, : 380 - 387