Techno-economic analysis and life cycle assessment for catalytic fast pyrolysis of mixed plastic waste

被引:46
|
作者
Yadav, Geetanjali [1 ,2 ]
Singh, Avantika [1 ,2 ]
Dutta, Abhijit [1 ]
Uekert, Taylor [2 ,3 ]
DesVeaux, Jason S. [1 ,2 ]
Nicholson, Scott R. [2 ,3 ]
Tan, Eric C. D. [1 ]
Mukarakate, Calvin [1 ]
Schaidle, Joshua A. [1 ]
Wrasman, Cody J. [1 ]
Carpenter, Alberta C. [2 ,3 ]
Baldwin, Robert M. [2 ,4 ]
Roman-Leshkov, Yuriy [2 ,5 ]
Beckham, Gregg T. [2 ,4 ]
机构
[1] Natl Renewable Energy Lab, Catalyt Carbon Transformat & Scale Up Ctr, Golden, CO 80401 USA
[2] BOTTLE Consortium, Golden, CO 80401 USA
[3] Natl Renewable Energy Lab, Strateg Energy Anal Ctr, Golden, CO 80401 USA
[4] Natl Renewable Energy Lab, Renewable Resources & Enabling Sci Ctr, Golden, CO 80401 USA
[5] MIT, Dept Chem Engn, Cambridge, MA 02142 USA
关键词
HIGH-DENSITY POLYETHYLENE; CONICAL SPOUTED BED; FLUIDIZED-BED; BTX AROMATICS; LIGHT OLEFINS; DEGRADATION; TEMPERATURE; STEAM; FUELS; RECOVERY;
D O I
10.1039/d3ee00749a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Pyrolysis of waste plastics has gained interest as a candidate chemical recycling technology. To examine the potential of this approach, we conducted a techno-economic analysis (TEA) and life cycle assessment (LCA) of a conceptual catalytic fast pyrolysis (CFP) facility that converts 240 metric tons/day of mixed plastic waste. The modeled base case predicts the minimum selling price (MSP) of a benzene, toluene, and xylenes (BTX) mixture at $1.07 per kg when co-products are sold at their average market prices. We predict that the aromatic product stream can be cost-competitive with virgin BTX mixtures ($0.68/kg) if the mixed waste plastics are available for less than $0.10/kg or if crude oil prices exceed $60/barrel. Moreover, we estimate that CFP-based conversion of waste plastics can reduce the total supply chain energy use by 24% but with a 2.4-fold increase in greenhouse gas (GHG) emissions per kilogram of BTX, relative to incumbent manufacturing process. Sensitivity analysis highlights that feedstock cost, co-product selling prices, capital cost for product separations, and operating costs are key cost drivers. Further, we examine three additional CFP processes that differ in product composition, namely naphtha, and a case where the products are rich in either C-2-C-4 olefins or BTX aromatic hydrocarbons. Whereas the MSP of naphtha ($2.18/kg) is similar to 4-fold higher than virgin naphtha, both the olefin-rich and aromatics-rich product cases exhibit a potential reduction in MSP up to 40%, with a 21%-45% reduction in total supply chain energy and 2.2-3.8-fold increase in GHG emissions relative to incumbent manufacturing processes. LCA predicts that the CFP process exhibits lower fossil fuel depletion than virgin manufacturing across all cases as well as lower acidification, ozone depletion, and smog formation for select cases, but high utility and feedstock preparation requirements result in poorer performance across other metrics. Overall, this study highlights important process parameters for improving CFP of mixed waste plastics from economic and environmental perspectives.
引用
收藏
页码:3638 / 3653
页数:17
相关论文
共 50 条
  • [31] A techno-economic analysis of microalgae remnant catalytic pyrolysis and upgrading to fuels
    Thilakaratne, Rajeeva
    Wright, Mark M.
    Brown, Robert C.
    FUEL, 2014, 128 : 104 - 112
  • [32] Techno-Economic Feasibility Study for Organic and Plastic Waste Pyrolysis Pilot Plant in Malaysia
    Lim, Mooktzeng
    Tan, Ee Sann
    SUSTAINABILITY, 2023, 15 (19)
  • [33] Techno-economic analysis of monosaccharide production via fast pyrolysis of lignocellulose
    Zhang, Yanan
    Brown, Tristan R.
    Hu, Guiping
    Brown, Robert C.
    BIORESOURCE TECHNOLOGY, 2013, 127 : 358 - 365
  • [34] Producing hydrocarbon fuel from the plastic waste: Techno-economic analysis
    Hamad Almohamadi
    Majed Alamoudi
    Usama Ahmed
    Rashid Shamsuddin
    Kevin Smith
    Korean Journal of Chemical Engineering, 2021, 38 : 2208 - 2216
  • [35] Producing hydrocarbon fuel from the plastic waste: Techno-economic analysis
    Almohamadi, Hamad
    Alamoudi, Majed
    Ahmed, Usama
    Shamsuddin, Rashid
    Smith, Kevin
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2021, 38 (11) : 2208 - 2216
  • [36] Techno-economic analysis and life-cycle assessment of jet fuels production from waste cooking oil via in situ catalytic transfer hydrogenation
    Barbera, Elena
    Naurzaliyev, Rustem
    Asiedu, Alexander
    Bertucco, Alberto
    Resurreccion, Eleazer P.
    Kumar, Sandeep
    RENEWABLE ENERGY, 2020, 160 (160) : 428 - 449
  • [37] Hydrogen production from fishing net waste for sustainable clean fuel: Techno-economic analysis and life cycle assessment
    Lee, Hyejeong
    Im, Junhyeok
    Cho, Hyungtae
    Jung, Sungyup
    Choi, Hyeseung
    Choi, Dongho
    Kim, Junghwan
    Lee, Jaewon
    Kwon, Eilhann E.
    CHEMICAL ENGINEERING JOURNAL, 2024, 481
  • [38] Techno-Economic Analysis and Life Cycle Assessment of Pineapple Leaves Utilization in Costa Rica
    Liao, Clara Yuqi
    Guan, Ysabel Jingyi
    Bustamante-Roman, Mauricio
    ENERGIES, 2022, 15 (16)
  • [39] Integration of techno-economic analysis and life cycle assessment for sustainable process design - A review
    Mahmud, Roksana
    Moni, Sheikh Moniruzzaman
    High, Karen
    Carbajales-Dale, Michael
    JOURNAL OF CLEANER PRODUCTION, 2021, 317
  • [40] Techno-economic and sensitivity analysis of shale gas development based on life cycle assessment
    Liang, Hong-Bin
    Zhang, Lie-Hui
    Zhao, Yu-Long
    He, Xiao
    Wu, Jian-Fa
    Zhang, Jing
    Yang, Jun
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2021, 95