Techno-Economic Analysis and Life Cycle Assessment of Pineapple Leaves Utilization in Costa Rica

被引:0
|
作者
Liao, Clara Yuqi [1 ]
Guan, Ysabel Jingyi [2 ]
Bustamante-Roman, Mauricio [3 ]
机构
[1] Univ Michigan, Civil & Environm Engn Dept, Ann Arbor, MI 48109 USA
[2] Univ Illinois, Phys, Champaign, IL 61801 USA
[3] Univ Costa Rica, Sch Biosyst Engn, San Jose 115012060, Costa Rica
关键词
Ananas comosus; bioethanol; fibrous material; mass and energy balance; life cycle assessment; protein; KLUYVEROMYCES-MARXIANUS;
D O I
10.3390/en15165784
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Pineapple production around the world creates large amounts of wasted organic residue, mainly in the form of pineapple leaves. Current management practices consist of in situ decomposition or in situ burning, both of which cause the proliferation of flies and air pollution, respectively. The research conducted aims to develop a utilization process for this residue. Considering that pineapple leaves are rich in carbohydrates and other nutrients, a simple biological process involving a two-step procedure for juice production and ethanol fermentation has been developed to convert the leaves into renewable fuel and spent yeasts for animal feed. The liquid fraction extracted from the leaves is used as the nutrients to culture yeast, Kluyveromyces marxianus, for ethanol and yeast protein production. In Costa Rica, one of the major pineapple-producing countries in the world, the studied process can produce 92,708 and 64,859 tons of bioethanol and spent yeast per year, respectively, from its 44,500 hectares of pineapple plantation. This techno-economic analysis indicates that a regional biorefinery with the capacity to produce 50,000 metric tons per year of ethanol could have a short payback period of 4.72 years. The life cycle analysis further demonstrates the advantages of the studied biorefining concept over the current practice of open burning.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Life cycle assessment of fresh pineapple from Costa Rica
    Ingwersen, Wesley W.
    [J]. JOURNAL OF CLEANER PRODUCTION, 2012, 35 : 152 - 163
  • [2] Environmental life cycle assessment and techno-economic analysis of triboelectric nanogenerators
    Ahmed, Abdelsalam
    Hassan, Islam
    Ibn-Mohammed, Taofeeq
    Mostafa, Hassan
    Reaney, Ian M.
    Koh, Lenny S. C.
    Zu, Jean
    Wang, Zhong Lin
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (03) : 653 - 671
  • [3] The Need for and Path to Harmonized Life Cycle Assessment and Techno-Economic Assessment for Carbon Dioxide Capture and Utilization
    Sick, Volker
    Armstrong, Katy
    Cooney, Gregory
    Cremonese, Lorenzo
    Eggleston, Alexandra
    Faber, Grant
    Hackett, Gregory
    Kaetelhoen, Arne
    Keoleian, Greg
    Marano, John
    Marriott, Joseph
    McCord, Stephen
    Miller, Shelie A.
    Mutchek, Michele
    Olfe-Kraeutlein, Barbara
    Ravikumar, Dwarakanath
    Roper, Louise Kjellerup
    Schaidle, Joshua
    Skone, Timothy
    Smith, Lorraine
    Strunge, Till
    Styring, Peter
    Tao, Ling
    Voelker, Simon
    Zimmermann, Arno
    [J]. ENERGY TECHNOLOGY, 2020, 8 (11)
  • [4] Life cycle assessment and techno-economic analysis of sustainable bioenergy production: a review
    Osman, Ahmed I.
    Fang, Bingbing
    Zhang, Yubing
    Liu, Yunfei
    Yu, Jiacheng
    Farghali, Mohamed
    Rashwan, Ahmed K.
    Chen, Zhonghao
    Chen, Lin
    Ihara, Ikko
    Rooney, David W.
    Yap, Pow-Seng
    [J]. ENVIRONMENTAL CHEMISTRY LETTERS, 2024, 22 (03) : 1115 - 1154
  • [5] Life cycle assessment and techno-economic analysis of sustainable bioenergy production: a review
    Ahmed I. Osman
    Bingbing Fang
    Yubing Zhang
    Yunfei Liu
    Jiacheng Yu
    Mohamed Farghali
    Ahmed K. Rashwan
    Zhonghao Chen
    Lin Chen
    Ikko Ihara
    David W. Rooney
    Pow-Seng Yap
    [J]. Environmental Chemistry Letters, 2024, 22 : 1115 - 1154
  • [6] Techno-Economic and Life Cycle Analysis for Energy Technologies
    Uhlrich, John
    [J]. ENERGY TECHNOLOGY, 2020, 8 (11)
  • [7] Life-cycle assessment and techno-economic analysis of the utilization of bio-oil components for the production of three chemicals
    Zheng, Ji-Lu
    Zhu, Ya-Hong
    Zhu, Ming-Qiang
    Sun, Guo-Tao
    Sun, Run-Cang
    [J]. GREEN CHEMISTRY, 2018, 20 (14) : 3287 - 3301
  • [8] Application and progress of techno-economic analysis and life cycle assessment in biomanufacturing of fuels and chemicals
    Rongzhan Fu
    Lixia Kang
    Chenyue Zhang
    Qiang Fei
    [J]. Green Chemical Engineering, 2023, 4 (02) : 189 - 198
  • [9] Time Value of Greenhouse Gas Emissions in Life Cycle Assessment and Techno-Economic Analysis
    Sproul, Evan
    Barlow, Jay
    Quinn, Jason C.
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2019, 53 (10) : 6073 - 6080
  • [10] Techno-economic and sensitivity analysis of shale gas development based on life cycle assessment
    Liang, Hong-Bin
    Zhang, Lie-Hui
    Zhao, Yu-Long
    He, Xiao
    Wu, Jian-Fa
    Zhang, Jing
    Yang, Jun
    [J]. JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2021, 95