Producing hydrocarbon fuel from the plastic waste: Techno-economic analysis

被引:0
|
作者
Hamad Almohamadi
Majed Alamoudi
Usama Ahmed
Rashid Shamsuddin
Kevin Smith
机构
[1] Islamic University of Madinah,Department of Chemical Engineering, Faculty of Engineering
[2] King Abdulaziz University,Department of Chemical and Materials Engineering, Faculty of Engineering
[3] University of British Columbia,Department of Chemical and Biological Engineering
[4] King Fahd University of Petroleum & Minerals,Chemical Engineering Department
[5] King Fahd University of Petroleum & Minerals,Interdisciplinary Research Center for Hydrogen and Energy Storage
[6] Universiti Teknologi PETRONAS,HICoE, Centre for Biofuel and Biochemical Research (CBBR), Institute for Sustainable 6 Living, Department of Chemical Engineering
来源
关键词
Plastic; Aspen Plus; Process Modelling; Fast Pyrolysis; Techno-economic Assessment; Waste Management;
D O I
暂无
中图分类号
学科分类号
摘要
Dumping plastic waste into landfills can lead to severe health and environmental problems. Plastic waste can be treated by the pyrolysis process to produce fuel. A techno-economic and feasibility assessment was performed for plastic-waste pyrolysis followed by hydrodeoxygenation to upgrade the fuel using the software Aspen Plus. A simulation was conducted using Aspen Plus to estimate the plant’s mass and energy balance; it is assumed that 1,000 dry metric tons of plastic waste is processed per day. Plastic waste contains 40% polystyrene (PS), 20% polyethylene (PE), 20% polypropylene (PP), and 20% polyethylene terephthalate (PET). The process is simulated in five steps: pretreatment, pyrolysis, hydrogen production, and hydrodeoxygenation of oil and energy generation. The mass and the energy yields of this process are 36% and 42%, respectively. The capital investment of the plant and the production cost were calculated based on the Aspen Plus model. Based on the economic estimation, the capital investment of this process is $118 million and the production cost is $27 million. For the 20-year project, the minimum selling price (MSP) of the fuel was calculated to be $0.60/gal. Sensitivity analysis was performed to verify the economic assumptions on the MSP. The MSP is highly sensitive to the feedstock cost, plant capacity, and product yield. As the plant capacity or product yield increases, the MSP decreases significantly.
引用
收藏
页码:2208 / 2216
页数:8
相关论文
共 50 条
  • [1] Producing hydrocarbon fuel from the plastic waste: Techno-economic analysis
    Almohamadi, Hamad
    Alamoudi, Majed
    Ahmed, Usama
    Shamsuddin, Rashid
    Smith, Kevin
    [J]. KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2021, 38 (11) : 2208 - 2216
  • [2] Techno-economic Analysis of Energy Recovery from Plastic Waste
    Ghodrat, Maryam
    Samali, Bijan
    [J]. 9TH INTERNATIONAL SYMPOSIUM ON HIGH-TEMPERATURE METALLURGICAL PROCESSING, 2018, : 13 - 24
  • [3] Pyrolysis of plastic waste for production of heavy fuel substitute: A techno-economic assessment
    Fivga, Antzela
    Dimitriou, Ioanna
    [J]. ENERGY, 2018, 149 : 865 - 874
  • [4] Techno-economic analysis of jet-fuel production from biorefinery waste lignin
    Shen, Rongchun
    Tao, Ling
    Yang, Bin
    [J]. BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR, 2019, 13 (03): : 486 - 501
  • [5] Renewable hydrocarbon fuels from hydrothermal liquefaction: A techno-economic analysis
    Pedersen, Thomas Helmer
    Hansen, Nick Hoy
    Perez, Oscar Miralles
    Cabezas, Daniel Esteban Villamar
    Rosendahl, Lasse A.
    [J]. BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR, 2018, 12 (02): : 213 - 223
  • [6] Techno-Economic Analysis of Hydrogen Generation in Hydrocarbon Reservoirs
    Sheng, James J.
    [J]. SPE Journal, 2024, 29 (10): : 5752 - 5760
  • [7] Techno-economic feasibility and exergy analysis of bioethanol production from waste
    Joseph, Annlyn Mary
    Tulasi, Yeswanth
    Shrivastava, Devashish
    Kiran, Bandaru
    [J]. ENERGY CONVERSION AND MANAGEMENT-X, 2023, 18
  • [8] Techno-economic analysis of portable plant from waste cooking oil
    Samad, Alan Try Putra
    Perdani, Meka Saima
    Putri, Dwini Normayulisa
    Hermansyah, Heri
    [J]. 5TH INTERNATIONAL CONFERENCE ON ENERGY AND ENVIRONMENT RESEARCH (ICEER 2018), 2018, 153 : 269 - 273
  • [9] The Techno-Economic Basis for Coproduct Manufacturing To Enable Hydrocarbon Fuel Production from Lignocellulosic Biomass
    Biddy, Mary J.
    Davis, Ryan
    Humbird, David
    Tao, Ling
    Dowe, Nancy
    Guarnieri, Michael T.
    Linger, Jeffrey G.
    Karp, Eric M.
    Salvachua, Davinia
    Vardon, Derek R.
    Beckham, Gregg T.
    [J]. ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2016, 4 (06): : 3196 - 3211
  • [10] Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: techno-economic assessment
    Crawford, Jordan T.
    Shan, Chin Wei
    Budsberg, Erik
    Morgan, Hannah
    Bura, Renata
    Gustafson, Rick
    [J]. BIOTECHNOLOGY FOR BIOFUELS, 2016, 9