The dimension-wise quadrature estimation of dynamic latent variable models for count data

被引:1
|
作者
Bianconcini, Silvia [1 ]
Cagnone, Silvia [1 ]
机构
[1] Univ Bologna, Dept Stat Sci, Via Belle Arti 41, I-40126 Bologna, Italy
关键词
Latent autoregressive models; Count data; Pairwise likelihood; Approximate likelihood inference; TIME-SERIES MODELS; STATE-SPACE MODELS; MAXIMUM-LIKELIHOOD; INFERENCE; INTEGRATION;
D O I
10.1016/j.csda.2022.107585
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
When dynamic latent variable models are specified for discrete and/or mixed observations, problems related to the integration of the likelihood function arise since analytical solutions do not exist. A recently developed dimension-wise quadrature is applied to deal with these likelihoods with high-dimensional integrals. A comparison is performed with the pairwise likelihood method, one of the most often used remedies. Both a real data application and a simulation study show the superior performance of the dimension-wise quadrature with respect to the pairwise likelihood in estimating the parameters of the latent autoregressive process. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] LATENT VARIABLE MODELS FOR ORDERED CATEGORICAL-DATA
    BARTHOLOMEW, DJ
    [J]. JOURNAL OF ECONOMETRICS, 1983, 22 (1-2) : 229 - 243
  • [42] Latent Variable Models and Big Data in the Process Industries
    MacGregor, J. F.
    Bruwer, M. J.
    Miletic, I.
    Cardin, M.
    Liu, Z.
    [J]. IFAC PAPERSONLINE, 2015, 48 (08): : 520 - 524
  • [43] Maximum Reconstruction Estimation for Generative Latent-Variable Models
    Cheng, Yong
    Liu, Yang
    Xu, Wei
    [J]. THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 3173 - 3179
  • [44] Inference and Interval Estimation for Indirect Effects With Latent Variable Models
    Falk, Carl F.
    Biesanz, Jeremy C.
    [J]. MULTIVARIATE BEHAVIORAL RESEARCH, 2011, 46 (06) : 1012 - 1012
  • [45] Particle methods for maximum likelihood estimation in latent variable models
    Adam M. Johansen
    Arnaud Doucet
    Manuel Davy
    [J]. Statistics and Computing, 2008, 18 : 47 - 57
  • [46] Simulation-based approach to estimation of latent variable models
    Qian, Zhiguang
    Shapiro, Alexander
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 51 (02) : 1243 - 1259
  • [47] Nonparametric Estimation of Multi-View Latent Variable Models
    Song, Le
    Anandkumar, Animashree
    Dai, Bo
    Xie, Bo
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 2), 2014, 32 : 640 - 648
  • [48] Bayesian estimation of single and multilevel models with latent variable interactions
    Asparouhov, Tihomir
    Muthen, Bengt
    [J]. STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2021, 28 (02) : 314 - 328
  • [49] Gaussian Process Latent Variable Models for human pose estimation
    Ek, Carl Henrik
    Torr, Philip H. S.
    Lawrence, Neil D.
    [J]. MACHINE LEARNING FOR MULTIMODAL INTERACTION, 2008, 4892 : 132 - +
  • [50] Particle methods for maximum likelihood estimation in latent variable models
    Johansen, Adam M.
    Doucet, Arnaud
    Davy, Manuel
    [J]. STATISTICS AND COMPUTING, 2008, 18 (01) : 47 - 57