Gaussian Process Latent Variable Models for human pose estimation

被引:0
|
作者
Ek, Carl Henrik [1 ]
Torr, Philip H. S. [1 ]
Lawrence, Neil D. [2 ]
机构
[1] Oxford Brookes Univ, Dept Comp, Oxford OX3 0BP, England
[2] Univ Manchester, Sch Comp Sci, Manchester, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We describe a method for recovering 3D human body pose from silhouettes. Our model is based on learning a latent space using the Gaussian Process Latent Variable Model (GP-LVM) [1] encapsulating both pose and silhouette features Our method is generative, this allows us to model the ambiguities of a silhouette representation in a principled way. We learn a dynamical model over the latent space which allows us to disambiguate between ambiguous silhouettes by temporal consistency. The model has only two free parameters and has several advantages over both regression approaches and other generative methods. In addition to the application shown in this paper the suggested model is easily extended to multiple observation spaces without constraints on type.
引用
收藏
页码:132 / +
页数:2
相关论文
共 50 条
  • [1] Mixtures of Gaussian process models for human pose estimation
    Fergie, Martin
    Galata, Aphrodite
    [J]. IMAGE AND VISION COMPUTING, 2013, 31 (12) : 949 - 957
  • [2] Latent Gaussian Mixture Regression for Human Pose Estimation
    Tian, Yan
    Sigal, Leonid
    Badino, Hernan
    De la Torre, Fernando
    Liu, Yong
    [J]. COMPUTER VISION - ACCV 2010, PT III, 2011, 6494 : 679 - +
  • [3] Estimation and visualization of process states using latent variable models based on Gaussian process
    Kaneko, Hiromasa
    [J]. ANALYTICAL SCIENCE ADVANCES, 2021, 2 (5-6): : 326 - 333
  • [4] A review on Gaussian Process Latent Variable Models
    Li, Ping
    Chen, Songcan
    [J]. CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2016, 1 (04) : 366 - +
  • [5] Ensembles of Gaussian process latent variable models
    Ajirak, Marzieh
    Liu, Yuhao
    Djuric, Petar M.
    [J]. 2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 1467 - 1471
  • [6] Latent Structured Models for Human Pose Estimation
    Ionescu, Catalin
    Li, Fuxin
    Sminchisescu, Cristian
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2011, : 2220 - 2227
  • [7] Gaussian Mixture Modeling with Gaussian Process Latent Variable Models
    Nickisch, Hannes
    Rasmussen, Carl Edward
    [J]. PATTERN RECOGNITION, 2010, 6376 : 272 - 282
  • [8] Manifold Denoising with Gaussian Process Latent Variable Models
    Gao, Yan
    Chan, Kap Luk
    Yau, Wei-Yun
    [J]. 19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 3719 - 3722
  • [9] Applications of Gaussian Process Latent Variable Models in Finance
    Nirwan, Rajbir S.
    Bertschinger, Nils
    [J]. INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 2, 2020, 1038 : 1209 - 1221
  • [10] Multimodal Gaussian Process Latent Variable Models with Harmonization
    Song, Guoli
    Wang, Shuhui
    Huang, Qingming
    Tian, Qi
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 5039 - 5047