The dimension-wise quadrature estimation of dynamic latent variable models for count data

被引:1
|
作者
Bianconcini, Silvia [1 ]
Cagnone, Silvia [1 ]
机构
[1] Univ Bologna, Dept Stat Sci, Via Belle Arti 41, I-40126 Bologna, Italy
关键词
Latent autoregressive models; Count data; Pairwise likelihood; Approximate likelihood inference; TIME-SERIES MODELS; STATE-SPACE MODELS; MAXIMUM-LIKELIHOOD; INFERENCE; INTEGRATION;
D O I
10.1016/j.csda.2022.107585
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
When dynamic latent variable models are specified for discrete and/or mixed observations, problems related to the integration of the likelihood function arise since analytical solutions do not exist. A recently developed dimension-wise quadrature is applied to deal with these likelihoods with high-dimensional integrals. A comparison is performed with the pairwise likelihood method, one of the most often used remedies. Both a real data application and a simulation study show the superior performance of the dimension-wise quadrature with respect to the pairwise likelihood in estimating the parameters of the latent autoregressive process. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Contrasting case-wise deletion with multiple imputation and latent variable approaches to dealing with missing observations in count regression models
    Afghari, Amir Pooyan
    Washington, Simon
    Prato, Carlo
    Haque, Md Mazharul
    [J]. ANALYTIC METHODS IN ACCIDENT RESEARCH, 2019, 24
  • [22] Estimation of dynamic latent variable models using simulated non-parametric moments
    Creel, Michael
    Kristensen, Dennis
    [J]. ECONOMETRICS JOURNAL, 2012, 15 (03): : 490 - 515
  • [23] LATENT VARIABLE MODELS FOR CLUSTERED ORDINAL DATA
    QU, YS
    PIEDMONTE, MR
    MEDENDORP, SV
    [J]. BIOMETRICS, 1995, 51 (01) : 268 - 275
  • [24] Latent variable mixed models with missing data
    Zare, N
    Ayatollahi, SMT
    Behboodian, J
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, 2003, 27 (A2): : 407 - 416
  • [25] Dimension-wise sparse low-rank approximation of a matrix with application to variable selection in high-dimensional integrative analyzes of association
    Poythress, J. C.
    Park, Cheolwoo
    Ahn, Jeongyoun
    [J]. JOURNAL OF APPLIED STATISTICS, 2022, 49 (15) : 3889 - 3907
  • [26] Semiparametric estimation of latent variable asset pricing models
    Dalderop, Jeroen
    [J]. JOURNAL OF ECONOMETRICS, 2023, 236 (01)
  • [27] Efficient estimation of generalized linear latent variable models
    Niku, Jenni
    Brooks, Wesley
    Herliansyah, Riki
    Hui, Francis K. C.
    Taskinen, Sara
    Warton, David I.
    [J]. PLOS ONE, 2019, 14 (05):
  • [28] Autoregressive Dynamic Latent Variable Models for Process Monitoring
    Zhou, Le
    Li, Gang
    Song, Zhihuan
    Qin, S. Joe
    [J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2017, 25 (01) : 366 - 373
  • [29] Sequential Dynamic Classification Using Latent Variable Models
    Lee, Seung Min
    Roberts, Stephen J.
    [J]. COMPUTER JOURNAL, 2010, 53 (09): : 1415 - 1429
  • [30] SEMIPARAMETRIC ESTIMATION OF HETEROGENEOUS COUNT DATA MODELS
    BRANNAS, K
    ROSENQVIST, G
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1994, 76 (02) : 247 - 258