Neural networks for parameter estimation in intractable models

被引:11
|
作者
Lenzi, Amanda [1 ]
Bessac, Julie [1 ]
Rudi, Johann [1 ]
Stein, Michael L. [1 ,2 ]
机构
[1] Argonne Natl Lab, Math & Comp Sci Div, Lemont, IL 60439 USA
[2] Rutgers State Univ, Dept Stat, Piscataway, NJ USA
关键词
Deep neural networks; Intractable likelihood; Max -stable distributions; Parameter estimation; APPROXIMATE BAYESIAN COMPUTATION; INFERENCE; PREDICTION; SIMULATION; EXTREMES;
D O I
10.1016/j.csda.2023.107762
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The goal is to use deep learning models to estimate parameters in statistical models when standard likelihood estimation methods are computationally infeasible. For instance, inference for max-stable processes is exceptionally challenging even with small datasets, but simulation is straightforward. Data from model simulations are used to train deep neural networks and learn statistical parameters from max-stable models. The proposed neural network-based method provides a competitive alternative to current approaches, as demonstrated by considerable accuracy and computational time improvements. It serves as a proof of concept for deep learning in statistical parameter estimation and can be extended to other estimation problems.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Parameter Estimation for Stochastic Models of Chemical Reaction Networks
    Wolf, Verena
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2011, (67):
  • [32] Parameter Estimation in Hidden Markov Models With Intractable Likelihoods Using Sequential Monte Carlo
    Yildirim, Sinan
    Singh, Sumeetpal S.
    Dean, Thomas
    Jasra, Ajay
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2015, 24 (03) : 846 - 865
  • [33] On Alternative Monte Carlo Methods for Parameter Estimation in Gamma Process Models With Intractable Likelihood
    Herr, Daniel Z.
    Vaisman, Radislav
    Scovell, Mitchell
    Kinaev, Nikolai
    IEEE TRANSACTIONS ON RELIABILITY, 2024, : 1 - 15
  • [34] A Time-Varying Parameter Estimation Method for Physiological Models Based on Physical Information Neural Networks
    Yao, Jiepeng
    Peng, Zhanjia
    Liu, Jingjing
    Fan, Chengxiao
    Wang, Zhongyi
    Huang, Lan
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2023, 137 (03): : 2243 - 2265
  • [35] Development of an Efficient Parameter Estimation Method for the Inference of Vohradsky's Neural Network Models of Genetic Networks
    Kimura, Shuhei
    Sato, Masanao
    Okada-Hatakeyama, Mariko
    2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2013,
  • [36] Conceptual and reduced vehicle models performance enhancement through parameter estimation and neural-networks coupling
    Gubitosa, M.
    Tsukano, T.
    Donders, S.
    Desmet, W.
    PROCEEDINGS OF ISMA2010 - INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING INCLUDING USD2010, 2010, : 4125 - 4139
  • [37] Perfusion Parameter Estimation Using Neural Networks and Data Augmentation
    Robben, David
    Suetens, Paul
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT I, 2019, 11383 : 439 - 446
  • [38] Application of artificial neural networks to parameter estimation of dynamical systems
    Materka, Andrzej
    Conference Record - IEEE Instrumentation and Measurement Technology Conference, 1994, 1 : 123 - 126
  • [39] Parameter estimation in groundwater hydrology sing artificial neural networks
    Shigidi, A
    Garcia, LA
    JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 2003, 17 (04) : 281 - 289
  • [40] Neural networks for optical vector and eye ball parameter estimation
    Fuhl, Wolfgang
    Gao, Hong
    Kasneci, Enkelejda
    ETRA 2020 SHORT PAPERS: ACM SYMPOSIUM ON EYE TRACKING RESEARCH & APPLICATIONS, 2020,