Neural networks for parameter estimation in intractable models

被引:11
|
作者
Lenzi, Amanda [1 ]
Bessac, Julie [1 ]
Rudi, Johann [1 ]
Stein, Michael L. [1 ,2 ]
机构
[1] Argonne Natl Lab, Math & Comp Sci Div, Lemont, IL 60439 USA
[2] Rutgers State Univ, Dept Stat, Piscataway, NJ USA
关键词
Deep neural networks; Intractable likelihood; Max -stable distributions; Parameter estimation; APPROXIMATE BAYESIAN COMPUTATION; INFERENCE; PREDICTION; SIMULATION; EXTREMES;
D O I
10.1016/j.csda.2023.107762
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The goal is to use deep learning models to estimate parameters in statistical models when standard likelihood estimation methods are computationally infeasible. For instance, inference for max-stable processes is exceptionally challenging even with small datasets, but simulation is straightforward. Data from model simulations are used to train deep neural networks and learn statistical parameters from max-stable models. The proposed neural network-based method provides a competitive alternative to current approaches, as demonstrated by considerable accuracy and computational time improvements. It serves as a proof of concept for deep learning in statistical parameter estimation and can be extended to other estimation problems.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Hurst Parameter Estimation Using Artificial Neural Networks
    Ledesma-Orozco, S.
    Ruiz-Pinales, J.
    Garcia-Hernandez, G.
    Cerda-Villafana, G.
    Hernandez-Fusilier, D.
    JOURNAL OF APPLIED RESEARCH AND TECHNOLOGY, 2011, 9 (02) : 227 - 241
  • [22] PWR system simulation and parameter estimation with neural networks
    Akkurt, H
    Çolak, Ü
    ANNALS OF NUCLEAR ENERGY, 2002, 29 (17) : 2087 - 2103
  • [23] Using neural networks for parameter estimation in ground water
    Garcia, LA
    Shigidi, A
    JOURNAL OF HYDROLOGY, 2006, 318 (1-4) : 215 - 231
  • [24] Parameter estimation of an aeroelastic aircraft using neural networks
    Raisinghani, SC
    Ghosh, AK
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2000, 25 (2): : 181 - 191
  • [25] Fast cosmological parameter estimation using neural networks
    Auld, T.
    Bridges, M.
    Hobson, M. P.
    Gull, S. F.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2007, 376 (01) : L11 - L15
  • [26] Parameter estimation of an aeroelastic aircraft using neural networks
    S. C. Raisinghani
    A. K. Ghosh
    Sadhana, 2000, 25 : 181 - 191
  • [27] Hopfield neural networks for on-line parameter estimation
    Alonso, Hugo
    Mendonca, Teresa
    Rocha, Paula
    NEURAL NETWORKS, 2009, 22 (04) : 450 - 462
  • [28] Parameter and state estimation for a class of neural mass models
    Postoyan, Romain
    Chong, Michelle
    Nesic, Dragan
    Kuhlmann, Levin
    2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 2322 - 2327
  • [29] STATE AND PARAMETER ESTIMATION FOR CANONIC MODELS OF NEURAL OSCILLATORS
    Tyukin, Ivan
    Steur, Erik
    Nijmeijer, Henk
    Fairhurst, David
    Song, Inseon
    Semyanov, Alexey
    Van Leeuwen, Cees
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2010, 20 (03) : 193 - 207
  • [30] Statistical parameter estimation with neural networks of average flows in ATM networks
    Murgu, A
    GLOBECOM 97 - IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, CONFERENCE RECORD, VOLS 1-3, 1997, : 961 - 961