Parameter Estimation in Hidden Markov Models With Intractable Likelihoods Using Sequential Monte Carlo

被引:11
|
作者
Yildirim, Sinan [1 ]
Singh, Sumeetpal S. [2 ]
Dean, Thomas [3 ]
Jasra, Ajay [4 ]
机构
[1] Univ Bristol, Sch Math, Bristol BS8 1TH, Avon, England
[2] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
[3] Darktrace, Cambridge CB3 0FA, England
[4] Natl Univ Singapore, Dept Stat & Appl Probabil, Singapore 119077, Singapore
基金
英国工程与自然科学研究理事会;
关键词
Approximate Bayesian computation; Maximum likelihood estimation; STOCHASTIC VOLATILITY; PARTICLE FILTER;
D O I
10.1080/10618600.2014.938811
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose sequential Monte Carlo-based algorithms for maximum likelihood estimation of the static parameters in hidden Markov models with an intractable likelihood using ideas from approximate Bayesian computation. The static parameter estimation algorithms are gradient-based and cover both offline and online estimation. We demonstrate their performance by estimating the parameters of three intractable models, namely the alpha-stable distribution, g-and-k distribution, and the stochastic volatility model with alpha-stable returns, using both real and synthetic data.
引用
收藏
页码:846 / 865
页数:20
相关论文
共 50 条
  • [1] Parameter Estimation for Hidden Markov Models with Intractable Likelihoods
    Dean, Thomas A.
    Singh, Sumeetpal S.
    Jasra, Ajay
    Peters, Gareth W.
    SCANDINAVIAN JOURNAL OF STATISTICS, 2014, 41 (04) : 970 - 987
  • [2] Gradient Free Parameter Estimation for Hidden Markov Models with Intractable Likelihoods
    Elena Ehrlich
    Ajay Jasra
    Nikolas Kantas
    Methodology and Computing in Applied Probability, 2015, 17 : 315 - 349
  • [3] Gradient Free Parameter Estimation for Hidden Markov Models with Intractable Likelihoods
    Ehrlich, Elena
    Jasra, Ajay
    Kantas, Nikolas
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2015, 17 (02) : 315 - 349
  • [4] Prediction in hidden Markov models using sequential Monte Carlo methods
    Zhang, Dongqing
    Ning, Xuanxi
    Liu, Xueni
    Ma, Hongwei
    PROCEEDINGS OF 2007 IEEE INTERNATIONAL CONFERENCE ON GREY SYSTEMS AND INTELLIGENT SERVICES, VOLS 1 AND 2, 2007, : 718 - 722
  • [5] Parameter estimation in deformable models using Markov chain Monte Carlo
    Chalana, V
    Haynor, DR
    Sampson, PD
    Kim, YM
    IMAGE PROCESSING - MEDICAL IMAGING 1997, PTS 1 AND 2, 1997, 3034 : 287 - 298
  • [6] Bayesian Monte Carlo estimation for profile hidden Markov models
    Lewis, Steven J.
    Raval, Alpan
    Angus, John E.
    MATHEMATICAL AND COMPUTER MODELLING, 2008, 47 (11-12) : 1198 - 1216
  • [7] Sequential Monte Carlo methods for filtering and smoothing in hidden Markov models
    Chen, Y
    Lai, TL
    PROCEEDINGS OF THE 2003 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING, 2003, : 544 - 544
  • [8] A Sequential Monte Carlo Approach for Online Stock Market Prediction Using Hidden Markov Models
    Bridget, Ahani E.
    Abass, O.
    JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2011, 10 (02) : 669 - 675
  • [9] SEQUENTIAL MONTE CARLO SMOOTHING FOR GENERAL STATE SPACE HIDDEN MARKOV MODELS
    Douc, Randal
    Garivier, Aurelien
    Moulines, Eric
    Olsson, Jimmy
    ANNALS OF APPLIED PROBABILITY, 2011, 21 (06): : 2109 - 2145
  • [10] Sequential Monte Carlo sampling in hidden Markov models of nonlinear dynamical systems
    Zeng, X.
    Anitescu, M.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 233 : 507 - 521