Layered oxide cathodes for sodium-ion batteries: From air stability, interface chemistry to phase transition

被引:57
|
作者
Liu, Yi-Feng [1 ,2 ,3 ,4 ]
Han, Kai [1 ]
Peng, Dan-Ni [1 ]
Kong, Ling-Yi [2 ]
Su, Yu [2 ,4 ]
Li, Hong-Wei [2 ,3 ,4 ]
Hu, Hai-Yan [2 ,4 ]
Li, Jia-Yang [2 ,4 ]
Wang, Hong-Rui
Fu, Zhi-Qiang [3 ]
Ma, Qiang [3 ]
Zhu, Yan-Fang [2 ,4 ]
Tang, Rui-Ren [1 ,7 ]
Chou, Shu-Lei [2 ,4 ]
Xiao, Yao [2 ,4 ,8 ]
Wu, Xiong-Wei [3 ,5 ,6 ,9 ]
机构
[1] Cent South Univ, Coll Chem & Chem Engn, Peoples Republ China, Changsha, Peoples R China
[2] Wenzhou Univ, Inst Carbon Neutralizat, Coll Chem & Mat Engn, Wenzhou, Peoples R China
[3] Hunan Agr Univ, Coll Agron, Sch Chem & Mat Sci, Changsha, Peoples R China
[4] Wenzhou Univ Technol, Wenzhou Key Lab Sodium Ion Batteries, Innovat Inst Carbon Neutralizat, Wenzhou, Peoples R China
[5] Hunan Univ, Coll Elect & Informat Engn, Changsha, Peoples R China
[6] Hunan Prov Yin Feng New Energy Co Ltd, Changsha, Peoples R China
[7] Cent South Univ, Coll Chem & Chem Engn, Changsha 410083, Peoples R China
[8] Wenzhou Univ, Inst Carbon Neutralizat, Coll Chem & Mat Engn, Wenzhou 325035, Peoples R China
[9] Hunan Agr Univ, Coll Agron, Sch Chem & Mat Sci, Changsha 410128, Peoples R China
基金
中国国家自然科学基金; 浙江省自然科学基金;
关键词
air stability; interface chemistry; layered oxide cathodes; phase transition; sodium-ion batteries; O3/P2 HYBRID STRUCTURES; HIGH-VOLTAGE CATHODE; HIGH-ENERGY CATHODE; HIGH-PERFORMANCE; ELECTROCHEMICAL PERFORMANCE; POSITIVE ELECTRODE; HIGH-CAPACITY; LONG-LIFE; NANI0.5MN0.5O2; CATHODE; CYCLING PERFORMANCE;
D O I
10.1002/inf2.12422
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Sodium-ion batteries (SIBs) are considered as a low-cost complementary or alternative system to prestigious lithium-ion batteries (LIBs) because of their similar working principle to LIBs, cost-effectiveness, and sustainable availability of sodium resources, especially in large-scale energy storage systems (EESs). Among various cathode candidates for SIBs, Na-based layered transition metal oxides have received extensive attention for their relatively large specific capacity, high operating potential, facile synthesis, and environmental benignity. However, there are a series of fatal issues in terms of poor air stability, unstable cathode/electrolyte interphase, and irreversible phase transition that lead to unsatisfactory battery performance from the perspective of preparation to application, outside to inside of layered oxide cathodes, which severely limit their practical application. This work is meant to review these critical problems associated with layered oxide cathodes to understand their fundamental roots and degradation mechanisms, and to provide a comprehensive summary of mainstream modification strategies including chemical substitution, surface modification, structure modulation, and so forth, concentrating on how to improve air stability, reduce interfacial side reaction, and suppress phase transition for realizing high structural reversibility, fast Na+ kinetics, and superior comprehensive electrochemical performance. The advantages and disadvantages of different strategies are discussed, and insights into future challenges and opportunities for layered oxide cathodes are also presented.
引用
收藏
页数:43
相关论文
共 50 条
  • [31] Cation-mixing stabilized layered oxide cathodes for sodium-ion batteries
    Shaohua Guo
    Yang Sun
    Pan Liu
    Jin Yi
    Ping He
    Xiaoyu Zhang
    Yanbei Zhu
    Ryosuke Senga
    Kazu Suenaga
    Mingwei Chen
    Haoshen Zhou
    Science Bulletin, 2018, 63 (06) : 376 - 384
  • [32] Stabilized Oxygen Vacancy Chemistry toward High-Performance Layered Oxide Cathodes for Sodium-Ion Batteries
    Cheng, Chen
    Zhuo, Zengqing
    Xia, Xiao
    Liu, Tong
    Shen, Yihao
    Yuan, Cheng
    Zeng, Pan
    Cao, Duanyun
    Zou, Ying
    Guo, Jinghua
    Zhang, Liang
    ACS Nano, 2024, 18 (51) : 35052 - 35065
  • [33] Shear-resistant interface of layered oxide cathodes for sodium ion batteries
    Huang, Qun
    Wang, Meiyu
    Zhang, Li
    Qi, Shuo
    Feng, Yiming
    He, Pingge
    Ji, Xiaobo
    Wang, Peng
    Zhou, Liangjun
    Chen, Shuangqiang
    Wei, Weifeng
    ENERGY STORAGE MATERIALS, 2022, 45 : 389 - 398
  • [34] Unraveling the Role of Li and Mg Substitution in Layered Sodium Oxide Cathodes for Sodium-Ion Batteries
    Wang, Jing-Song
    Shen, Ming-Yuan
    Li, Wen-Cui
    Wu, Tao
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (33) : 43548 - 43555
  • [35] Industrialization of Layered Oxide Cathodes for Lithium-Ion and Sodium-Ion Batteries: A Comparative Perspective
    Darga, Joe
    Lamb, Julia
    Manthiram, Arumugam
    ENERGY TECHNOLOGY, 2020, 8 (12)
  • [36] A comprehensive review of layered transition metal oxide cathodes for sodium-ion batteries: The latest advancements and future perspectives
    Li, Pengzhi
    Yuan, Tao
    Qiu, Jian
    Che, Haiying
    Ma, Qianqian
    Pang, Yuepeng
    Ma, Zi-Feng
    Zheng, Shiyou
    Materials Science and Engineering R: Reports, 2025, 163
  • [37] Recent developments of layered transition metal oxide cathodes for sodium-ion batteries toward desired high performance
    Li, Siqing
    Sun, Yuanyuan
    Pang, Yuepeng
    Xia, Shuixin
    Chen, Taiqiang
    Sun, Hao
    Zheng, Shiyou
    Yuan, Tao
    ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, 2022, 17 (04)
  • [38] Toward the High-Voltage Stability of Layered Oxide Cathodes for Sodium-Ion Batteries: Challenges, Progress, and Perspectives
    Chen, Zhigao
    Deng, Yuyu
    Kong, Ji
    Fu, Weibin
    Liu, Chenyang
    Jin, Ting
    Jiao, Lifang
    ADVANCED MATERIALS, 2024, 36 (26)
  • [39] Progress on multiphase layered transition metal oxide cathodes of sodium ion batteries
    Wang, Qi
    Chu, Shiyong
    Guo, Shaohua
    CHINESE CHEMICAL LETTERS, 2020, 31 (09) : 2167 - 2176
  • [40] Spinel/Post-spinel engineering on layered oxide cathodes for sodium-ion batteries
    Zhu, Yan-Fang
    Xiao, Yao
    Dou, Shi-Xue
    Kang, Yong-Mook
    Chou, Shu-Lei
    ESCIENCE, 2021, 1 (01): : 13 - 27