Toward the High-Voltage Stability of Layered Oxide Cathodes for Sodium-Ion Batteries: Challenges, Progress, and Perspectives

被引:0
|
作者
Chen, Zhigao [1 ]
Deng, Yuyu [1 ,2 ]
Kong, Ji [1 ,2 ]
Fu, Weibin [2 ]
Liu, Chenyang [1 ]
Jin, Ting [1 ,2 ,3 ]
Jiao, Lifang [2 ]
机构
[1] Northwestern Polytech Univ Northwestern Polytechni, Ctr Nano Energy Mat, Sch Mat Sci & Engn, State Key Lab Solidificat Proc, Xian 710072, Peoples R China
[2] Nankai Univ, Coll Chem, Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Key Lab Adv Energy Mat Chem,Minist Educ, Tianjin 300071, Peoples R China
[3] Hong Kong Polytech Univ, Dept Appl Phys, Hong Kong 999077, Peoples R China
基金
中国国家自然科学基金;
关键词
electrode/electrolyte interfaces; failure mechanisms; high voltage; layered oxide cathodes; sodium-ion batteries; OXYGEN REDOX CHEMISTRY; HIGH-ENERGY; ANIONIC REDOX; STRUCTURAL STABILITY; ELECTRODE MATERIALS; POSITIVE ELECTRODE; PHASE-TRANSITION; RATIONAL DESIGN; PERFORMANCE; LITHIUM;
D O I
10.1002/adma.202402008
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Sodium-ion batteries (SIBs) have garnered significant attention as ideal candidates for large-scale energy storage due to their notable advantages in terms of resource availability and cost-effectiveness. However, there remains a substantial energy density gap between SIBs and commercially available lithium-ion batteries (LIBs), posing challenges to meeting the requirements of practical applications. The fabrication of high-energy cathodes has emerged as an efficient approach to enhancing the energy density of SIBs, which commonly requires cathodes operating in high-voltage regions. Layered oxide cathodes (LOCs), with low cost, facile synthesis, and high theoretical specific capacity, have emerged as one of the most promising candidates for commercial applications. However, LOCs encounter significant challenges when operated in high-voltage regions such as irreversible phase transitions, migration and dissolution of metal cations, loss of reactive oxygen, and the occurrence of serious interfacial parasitic reactions. These issues ultimately result in severe degradation in battery performance. This review aims to shed light on the key challenges and failure mechanisms encountered by LOCs when operated in high-voltage regions. Additionally, the corresponding strategies for improving the high-voltage stability of LOCs are comprehensively summarized. By providing fundamental insights and valuable perspectives, this review aims to contribute to the advancement of high-energy SIBs.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Fast-charge high-voltage layered cathodes for sodium-ion batteries
    Qidi Wang
    Dong Zhou
    Chenglong Zhao
    Jianlin Wang
    Hao Guo
    Liguang Wang
    Zhenpeng Yao
    Deniz Wong
    Götz Schuck
    Xuedong Bai
    Jun Lu
    Marnix Wagemaker
    Nature Sustainability, 2024, 7 : 338 - 347
  • [2] Fast-charge high-voltage layered cathodes for sodium-ion batteries
    Wang, Qidi
    Zhou, Dong
    Zhao, Chenglong
    Wang, Jianlin
    Guo, Hao
    Wang, Liguang
    Yao, Zhenpeng
    Wong, Deniz
    Schuck, Goetz
    Bai, Xuedong
    Lu, Jun
    Wagemaker, Marnix
    NATURE SUSTAINABILITY, 2024, 7 (03) : 338 - 347
  • [3] Oxide cathodes for sodium-ion batteries: Designs,challenges, and perspectives
    Tao Chen
    Baixue Ouyang
    Xiaowen Fan
    Weili Zhou
    Weifang Liu
    Kaiyu Liu
    Carbon Energy, 2022, 4 (02) : 170 - 199
  • [4] Oxide cathodes for sodium-ion batteries: Designs, challenges, and perspectives
    Chen, Tao
    Ouyang, Baixue
    Fan, Xiaowen
    Zhou, Weili
    Liu, Weifang
    Liu, Kaiyu
    CARBON ENERGY, 2022, 4 (02) : 170 - 199
  • [5] Recent progress on strategies to improve the high-voltage stability of layered-oxide cathode materials for sodium-ion batteries
    Song, Tengfei
    Kendrick, Emma
    JOURNAL OF PHYSICS-MATERIALS, 2021, 4 (03):
  • [6] Insights into the Improved High-Voltage Performance of Li-Incorporated Layered Oxide Cathodes for Sodium-Ion Batteries
    You, Ya
    Xin, Sen
    Asl, Hooman Yaghoobnejad
    Li, Wangda
    Wang, Peng-Fei
    Guo, Yu-Guo
    Manthiram, Arumugam
    CHEM, 2018, 4 (09): : 2124 - 2139
  • [7] Recent progress in layered oxide cathodes for sodium-ion batteries: stability, phase transition and solutions
    Chen, Xiaoqin
    Wang, Chenkai
    Zhao, Yu
    Wang, Yongxin
    Yin, Xiaoju
    Zhang, Naiqing
    Journal of Materials Chemistry A, 2024, 12 (46) : 31797 - 31817
  • [8] Recent Progress of Layered Transition Metal Oxide Cathodes for Sodium-Ion Batteries
    Liu, Qiannan
    Hu, Zhe
    Chen, Mingzhe
    Zou, Chao
    Jin, Huile
    Wang, Shun
    Chou, Shu-Lei
    Dou, Shi-Xue
    SMALL, 2019, 15 (32)
  • [9] Challenges and Strategies toward Practical Application of Layered Transition Metal Oxide Cathodes for Sodium-Ion Batteries
    Liu, Yuehui
    Zhang, Yu-Han
    Ma, Jun
    Zhao, Jingwen
    Li, Xia
    Cui, Guanglei
    CHEMISTRY OF MATERIALS, 2023, 36 (01) : 54 - 73
  • [10] High-Entropy Layered Oxide Cathodes for Sodium-Ion Batteries
    Zhao, Chenglong
    Ding, Feixiang
    Lu, Yaxiang
    Chen, Liquan
    Hu, Yong-Sheng
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (01) : 264 - 269