Layered oxide cathodes for sodium-ion batteries: From air stability, interface chemistry to phase transition

被引:98
|
作者
Liu, Yi-Feng [1 ,2 ,3 ,4 ]
Han, Kai [1 ]
Peng, Dan-Ni [1 ]
Kong, Ling-Yi [2 ]
Su, Yu [2 ,4 ]
Li, Hong-Wei [2 ,3 ,4 ]
Hu, Hai-Yan [2 ,4 ]
Li, Jia-Yang [2 ,4 ]
Wang, Hong-Rui
Fu, Zhi-Qiang [3 ]
Ma, Qiang [3 ]
Zhu, Yan-Fang [2 ,4 ]
Tang, Rui-Ren [1 ,7 ]
Chou, Shu-Lei [2 ,4 ]
Xiao, Yao [2 ,4 ,8 ]
Wu, Xiong-Wei [3 ,5 ,6 ,9 ]
机构
[1] Cent South Univ, Coll Chem & Chem Engn, Peoples Republ China, Changsha, Peoples R China
[2] Wenzhou Univ, Inst Carbon Neutralizat, Coll Chem & Mat Engn, Wenzhou, Peoples R China
[3] Hunan Agr Univ, Coll Agron, Sch Chem & Mat Sci, Changsha, Peoples R China
[4] Wenzhou Univ Technol, Wenzhou Key Lab Sodium Ion Batteries, Innovat Inst Carbon Neutralizat, Wenzhou, Peoples R China
[5] Hunan Univ, Coll Elect & Informat Engn, Changsha, Peoples R China
[6] Hunan Prov Yin Feng New Energy Co Ltd, Changsha, Peoples R China
[7] Cent South Univ, Coll Chem & Chem Engn, Changsha 410083, Peoples R China
[8] Wenzhou Univ, Inst Carbon Neutralizat, Coll Chem & Mat Engn, Wenzhou 325035, Peoples R China
[9] Hunan Agr Univ, Coll Agron, Sch Chem & Mat Sci, Changsha 410128, Peoples R China
基金
浙江省自然科学基金; 中国国家自然科学基金;
关键词
air stability; interface chemistry; layered oxide cathodes; phase transition; sodium-ion batteries; O3/P2 HYBRID STRUCTURES; HIGH-VOLTAGE CATHODE; HIGH-ENERGY CATHODE; HIGH-PERFORMANCE; ELECTROCHEMICAL PERFORMANCE; POSITIVE ELECTRODE; HIGH-CAPACITY; LONG-LIFE; NANI0.5MN0.5O2; CATHODE; CYCLING PERFORMANCE;
D O I
10.1002/inf2.12422
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Sodium-ion batteries (SIBs) are considered as a low-cost complementary or alternative system to prestigious lithium-ion batteries (LIBs) because of their similar working principle to LIBs, cost-effectiveness, and sustainable availability of sodium resources, especially in large-scale energy storage systems (EESs). Among various cathode candidates for SIBs, Na-based layered transition metal oxides have received extensive attention for their relatively large specific capacity, high operating potential, facile synthesis, and environmental benignity. However, there are a series of fatal issues in terms of poor air stability, unstable cathode/electrolyte interphase, and irreversible phase transition that lead to unsatisfactory battery performance from the perspective of preparation to application, outside to inside of layered oxide cathodes, which severely limit their practical application. This work is meant to review these critical problems associated with layered oxide cathodes to understand their fundamental roots and degradation mechanisms, and to provide a comprehensive summary of mainstream modification strategies including chemical substitution, surface modification, structure modulation, and so forth, concentrating on how to improve air stability, reduce interfacial side reaction, and suppress phase transition for realizing high structural reversibility, fast Na+ kinetics, and superior comprehensive electrochemical performance. The advantages and disadvantages of different strategies are discussed, and insights into future challenges and opportunities for layered oxide cathodes are also presented.
引用
收藏
页数:43
相关论文
共 50 条
  • [21] Layered oxide cathodes for sodium-ion batteries: microstructure design, local chemistry and structural unit
    Ling-Yi Kong
    Han-Xiao Liu
    Yan-Fang Zhu
    Jia-Yang Li
    Yu Su
    Hong-Wei Li
    Hai-Yan Hu
    Yi-Feng Liu
    Ming-Jing Yang
    Zhuang-Chun Jian
    Xin-Bei Jia
    Shu-Lei Chou
    Yao Xiao
    Science China Chemistry, 2024, 67 (1) : 191 - 213
  • [22] Homeostatic Solid Solution in Layered Transition-Metal Oxide Cathodes of Sodium-Ion Batteries
    Ren, Meng
    Zhao, Shuo
    Gao, Suning
    Zhang, Tong
    Hou, Machuan
    Zhang, Wei
    Feng, Kun
    Zhong, Jun
    Hua, Weibo
    Indris, Sylvio
    Zhang, Kai
    Chen, Jun
    Li, Fujun
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 145 (01) : 224 - 233
  • [23] Improvement of cycle life for layered oxide cathodes in sodium-ion batteries
    Yang, Huan
    Wang, Dong
    Liu, Yalan
    Liu, Yihua
    Zhong, Benhe
    Song, Yang
    Kong, Qingquan
    Wu, Zhenguo
    Guo, Xiaodong
    ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (05) : 1756 - 1780
  • [24] High-Entropy Layered Oxide Cathodes for Sodium-Ion Batteries
    Zhao, Chenglong
    Ding, Feixiang
    Lu, Yaxiang
    Chen, Liquan
    Hu, Yong-Sheng
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (01) : 264 - 269
  • [25] Oxygen vacancy promising highly reversible phase transition in layered cathodes for sodium-ion batteries
    Kezhu Jiang
    Shaohua Guo
    Wei Kong Pang
    Xueping Zhang
    Tiancheng Fang
    Shao-fei Wang
    Fangwei Wang
    Xiaoyu Zhang
    Ping He
    Haoshen Zhou
    Nano Research, 2021, 14 : 4100 - 4106
  • [26] Oxygen vacancy promising highly reversible phase transition in layered cathodes for sodium-ion batteries
    Jiang, Kezhu
    Guo, Shaohua
    Pang, Wei Kong
    Zhang, Xueping
    Fang, Tiancheng
    Wang, Shao-fei
    Wang, Fangwei
    Zhang, Xiaoyu
    He, Ping
    Zhou, Haoshen
    NANO RESEARCH, 2021, 14 (11) : 4100 - 4106
  • [27] Phase engineering of Ni-Mn binary layered oxide cathodes for sodium-ion batteries
    Hong, Feifei
    Zhou, Xin
    Liu, Xiaohong
    Feng, Guilin
    Zhang, Heng
    Fan, Weifeng
    Zhang, Bin
    Zuo, Meihua
    Xing, Wangyan
    Zhang, Ping
    Yan, Hua
    Xiang, Wei
    JOURNAL OF ENERGY CHEMISTRY, 2024, 91 : 501 - 511
  • [28] Interface Issues of Layered Transition Metal Oxide Cathodes for Sodium-Ion Batteries: Current Status, Recent Advances, Strategies, and Prospects
    Kuang, Yongxin
    Wu, Yanxue
    Zhang, Hangyu
    Sun, Huapeng
    MOLECULES, 2024, 29 (24):
  • [29] Facilitating Layered Oxide Cathodes Based on Orbital Hybridization for Sodium-Ion Batteries: Marvelous Air Stability, Controllable High Voltage, and Anion Redox Chemistry
    Jia, Xin-Bei
    Wang, Jingqiang
    Liu, Yi-Feng
    Zhu, Yan-Fang
    Li, Jia-Yang
    Li, Yan-Jiang
    Chou, Shu-Lei
    Xiao, Yao
    ADVANCED MATERIALS, 2024, 36 (15)
  • [30] Highly Symmetrical Six-Transition Metal Ring Units Promising High Air-Stability of Layered Oxide Cathodes for Sodium-Ion Batteries
    Gan, Lu
    Yuan, Xin-Guang
    Han, Jia-Jun
    Yang, Xinan
    Zheng, Lituo
    Huang, Zhigao
    Yao, Hu-Rong
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (07)