Image Processing Pipeline for Fluoroelastomer Crystallite Detection in Atomic Force Microscopy Images

被引:5
|
作者
Lu, Mingjian [1 ,3 ]
Venkat, Sameera Nalin [1 ,2 ]
Augustino, Jube [1 ,2 ]
Meshnick, David [1 ,3 ]
Jimenez, Jayvic Cristian [1 ,2 ]
Tripathi, Pawan K. [1 ,2 ]
Nihar, Arafath [1 ,3 ]
Orme, Christine A. [4 ]
French, Roger H. [1 ,2 ]
Bruckman, Laura S. [1 ,2 ]
Wu, Yinghui [1 ,3 ]
机构
[1] Case Western Reserve Univ CWRU, Mat Data Sci Stockpile Stewardship Ctr Excellence, Cleveland, OH 44106 USA
[2] CWRU, Dept Mat Sci & Engn, Cleveland, OH 44106 USA
[3] CWRU, Dept Comp & Data Sci, Cleveland, OH 44106 USA
[4] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA
关键词
Phase transformations; Data augmentation; Object detection; Image segmentation; KINETICS;
D O I
10.1007/s40192-023-00320-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Phase transformations in materials systems can be tracked using atomic force microscopy (AFM), enabling the examination of surface properties and macroscale morphologies. In situ measurements investigating phase transformations generate large datasets of time-lapse image sequences. The interpretation of the resulting image sequences, guided by domain-knowledge, requires manual image processing using handcrafted masks. This approach is time-consuming and restricts the number of images that can be processed. In this study, we developed an automated image processing pipeline which integrates image detection and segmentation methods. We examine five time-series AFM videos of various fluoroelastomer phase transformations. The number of image sequences per video ranges from a hundred to a thousand image sequences. The resulting image processing pipeline aims to automatically classify and analyze images to enable batch processing. Using this pipeline, the growth of each individual fluoroelastomer crystallite can be tracked through time. We incorporated statistical analysis into the pipeline to investigate trends in phase transformations between different fluoroelastomer batches. Understanding these phase transformations is crucial, as it can provide valuable insights into manufacturing processes, improve product quality, and possibly lead to the development of more advanced fluoroelastomer formulations.
引用
收藏
页码:371 / 385
页数:15
相关论文
共 50 条
  • [1] Image Processing Pipeline for Fluoroelastomer Crystallite Detection in Atomic Force Microscopy Images
    Mingjian Lu
    Sameera Nalin Venkat
    Jube Augustino
    David Meshnick
    Jayvic Cristian Jimenez
    Pawan K. Tripathi
    Arafath Nihar
    Christine A. Orme
    Roger H. French
    Laura S. Bruckman
    Yinghui Wu
    Integrating Materials and Manufacturing Innovation, 2023, 12 : 371 - 385
  • [2] DETECTION OF ELLIPTICAL PARTICLES IN ATOMIC FORCE MICROSCOPY IMAGES
    Sedlar, Jiri
    Zitova, Barbara
    Kopecek, Jaromir
    Todorciuc, Tatiana
    Kratochvilova, Irena
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 1233 - 1236
  • [3] Use of macros in atomic force microscopy image analysis and image processing
    Univ of Liverpool, Liverpool, United Kingdom
    J Comput Assisted Microsc, 2 (77-82):
  • [4] Wavelet-transform processing of images in atomic force microscopy
    Rekhviashvili, SS
    TECHNICAL PHYSICS LETTERS, 2002, 28 (03) : 237 - 238
  • [5] Wavelet-transform processing of images in atomic force microscopy
    S. Sh. Rekhviashvili
    Technical Physics Letters, 2002, 28 : 237 - 238
  • [6] Image correction for atomic force microscopy images with functionalized tips
    Neu, M.
    Moll, N.
    Gross, L.
    Meyer, G.
    Giessibl, F. J.
    Repp, J.
    PHYSICAL REVIEW B, 2014, 89 (20):
  • [7] Multivariate processing of atomic-force microscopy images for detection of the response of plasticized polymeric membranes
    M. M. Khaydukova
    O. A. Zadorozhnaya
    D. O. Kirsanov
    H. Iken
    D. Rolka
    M. Schöning
    V. A. Babain
    Yu. G. Vlasov
    A. V. Legin
    Russian Journal of Applied Chemistry, 2014, 87 : 307 - 314
  • [8] Multivariate processing of atomic-force microscopy images for detection of the response of plasticized polymeric membranes
    Khaydukova, M. M.
    Zadorozhnaya, O. A.
    Kirsanov, D. O.
    Iken, H.
    Rolka, D.
    Schoening, M.
    Babain, V. A.
    Vlasov, Yu. G.
    Legin, A. V.
    RUSSIAN JOURNAL OF APPLIED CHEMISTRY, 2014, 87 (03) : 307 - 314
  • [9] Pipeline for Electron Microscopy Images Processing
    Urbanova, Pavla
    Bozhynov, Vladyslav
    Bekkozhayeva, Dinara
    Cisar, Petr
    Zelezny, Milos
    BIOINFORMATICS AND BIOMEDICAL ENGINEERING, IWBBIO 2019, PT I, 2019, 11465 : 142 - 153
  • [10] Automated image analysis of atomic force microscopy images of rotavirus particles
    Venkataraman, S.
    Allison, D. P.
    Qi, H.
    Morrell-Falvey, J. L.
    Kallewaard, N. L.
    Crowe, J. E., Jr.
    Doktycz, M. J.
    ULTRAMICROSCOPY, 2006, 106 (8-9) : 829 - 837