Image Processing Pipeline for Fluoroelastomer Crystallite Detection in Atomic Force Microscopy Images

被引:5
|
作者
Lu, Mingjian [1 ,3 ]
Venkat, Sameera Nalin [1 ,2 ]
Augustino, Jube [1 ,2 ]
Meshnick, David [1 ,3 ]
Jimenez, Jayvic Cristian [1 ,2 ]
Tripathi, Pawan K. [1 ,2 ]
Nihar, Arafath [1 ,3 ]
Orme, Christine A. [4 ]
French, Roger H. [1 ,2 ]
Bruckman, Laura S. [1 ,2 ]
Wu, Yinghui [1 ,3 ]
机构
[1] Case Western Reserve Univ CWRU, Mat Data Sci Stockpile Stewardship Ctr Excellence, Cleveland, OH 44106 USA
[2] CWRU, Dept Mat Sci & Engn, Cleveland, OH 44106 USA
[3] CWRU, Dept Comp & Data Sci, Cleveland, OH 44106 USA
[4] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA
关键词
Phase transformations; Data augmentation; Object detection; Image segmentation; KINETICS;
D O I
10.1007/s40192-023-00320-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Phase transformations in materials systems can be tracked using atomic force microscopy (AFM), enabling the examination of surface properties and macroscale morphologies. In situ measurements investigating phase transformations generate large datasets of time-lapse image sequences. The interpretation of the resulting image sequences, guided by domain-knowledge, requires manual image processing using handcrafted masks. This approach is time-consuming and restricts the number of images that can be processed. In this study, we developed an automated image processing pipeline which integrates image detection and segmentation methods. We examine five time-series AFM videos of various fluoroelastomer phase transformations. The number of image sequences per video ranges from a hundred to a thousand image sequences. The resulting image processing pipeline aims to automatically classify and analyze images to enable batch processing. Using this pipeline, the growth of each individual fluoroelastomer crystallite can be tracked through time. We incorporated statistical analysis into the pipeline to investigate trends in phase transformations between different fluoroelastomer batches. Understanding these phase transformations is crucial, as it can provide valuable insights into manufacturing processes, improve product quality, and possibly lead to the development of more advanced fluoroelastomer formulations.
引用
收藏
页码:371 / 385
页数:15
相关论文
共 50 条
  • [11] Perspectives Toward an Integrative Structural Biology Pipeline With Atomic Force Microscopy Topographic Images
    Pellequer, Jean-Luc
    JOURNAL OF MOLECULAR RECOGNITION, 2024, 37 (06)
  • [12] Image processing for resonance frequency mapping in atomic force modulation microscopy
    Arinero, R.
    Leveque, G.
    Girard, P.
    Ferrandis, J. Y.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2007, 78 (02):
  • [13] Noise in atomic force microscopy images
    Timashev, P. S.
    Aksenova, N. A.
    Solovieva, A. B.
    Timashev, S. F.
    NOISE AND FLUCTUATIONS IN PHOTONICS, QUANTUM OPTICS, AND COMMUNICATIONS, 2007, 6603
  • [14] Evolutionary optimization of image processing for cell detection in microscopy images
    Andreas Haghofer
    Sebastian Dorl
    Andre Oszwald
    Johannes Breuss
    Jaroslaw Jacak
    Stephan M. Winkler
    Soft Computing, 2020, 24 : 17847 - 17862
  • [15] Evolutionary optimization of image processing for cell detection in microscopy images
    Haghofer, Andreas
    Dorl, Sebastian
    Oszwald, Andre
    Breuss, Johannes
    Jacak, Jaroslaw
    Winkler, Stephan M.
    SOFT COMPUTING, 2020, 24 (23) : 17847 - 17862
  • [16] Automated image segmentation-assisted flattening of atomic force microscopy images
    Wang, Yuliang
    Lu, Tongda
    Li, Xiaolai
    Wang, Huimin
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2018, 9 : 975 - 985
  • [17] Simulating noncontact atomic force microscopy images
    Chelikowsky, James R.
    Fan, Dingxin
    Lee, Alex J.
    Sakai, Yuki
    PHYSICAL REVIEW MATERIALS, 2019, 3 (11)
  • [18] Subatomic Features in Atomic Force Microscopy Images
    Hug, H. J.
    Lantz, M. A.
    Abdurixit, A.
    van Schendel, P. J. A.
    Hoffmann, R.
    Kappenberger, P.
    Baratoff, A.
    SCIENCE, 2001, 291 (5513) : 2509 - 2509
  • [19] Integration of confocal and atomic force microscopy images
    Kondra, Shripad
    Laishram, Jummi
    Ban, Jelena
    Migliorini, Elisa
    Di Foggia, Valentina
    Lazzarino, Marco
    Torre, Vincent
    Ruaro, Maria Elisabetta
    JOURNAL OF NEUROSCIENCE METHODS, 2009, 177 (01) : 94 - 107
  • [20] Are High Resolution Atomic Force Microscopy images proportional to the force or the force
    Ventura-Macias, Emiliano
    Romero-Muniz, Carlos
    Gonzalez-Sanchez, Pablo
    Pou, Pablo
    Perez, Ruben
    APPLIED SURFACE SCIENCE, 2023, 634