Image Processing Pipeline for Fluoroelastomer Crystallite Detection in Atomic Force Microscopy Images

被引:5
|
作者
Lu, Mingjian [1 ,3 ]
Venkat, Sameera Nalin [1 ,2 ]
Augustino, Jube [1 ,2 ]
Meshnick, David [1 ,3 ]
Jimenez, Jayvic Cristian [1 ,2 ]
Tripathi, Pawan K. [1 ,2 ]
Nihar, Arafath [1 ,3 ]
Orme, Christine A. [4 ]
French, Roger H. [1 ,2 ]
Bruckman, Laura S. [1 ,2 ]
Wu, Yinghui [1 ,3 ]
机构
[1] Case Western Reserve Univ CWRU, Mat Data Sci Stockpile Stewardship Ctr Excellence, Cleveland, OH 44106 USA
[2] CWRU, Dept Mat Sci & Engn, Cleveland, OH 44106 USA
[3] CWRU, Dept Comp & Data Sci, Cleveland, OH 44106 USA
[4] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA
关键词
Phase transformations; Data augmentation; Object detection; Image segmentation; KINETICS;
D O I
10.1007/s40192-023-00320-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Phase transformations in materials systems can be tracked using atomic force microscopy (AFM), enabling the examination of surface properties and macroscale morphologies. In situ measurements investigating phase transformations generate large datasets of time-lapse image sequences. The interpretation of the resulting image sequences, guided by domain-knowledge, requires manual image processing using handcrafted masks. This approach is time-consuming and restricts the number of images that can be processed. In this study, we developed an automated image processing pipeline which integrates image detection and segmentation methods. We examine five time-series AFM videos of various fluoroelastomer phase transformations. The number of image sequences per video ranges from a hundred to a thousand image sequences. The resulting image processing pipeline aims to automatically classify and analyze images to enable batch processing. Using this pipeline, the growth of each individual fluoroelastomer crystallite can be tracked through time. We incorporated statistical analysis into the pipeline to investigate trends in phase transformations between different fluoroelastomer batches. Understanding these phase transformations is crucial, as it can provide valuable insights into manufacturing processes, improve product quality, and possibly lead to the development of more advanced fluoroelastomer formulations.
引用
收藏
页码:371 / 385
页数:15
相关论文
共 50 条
  • [21] Modeling of force-volume images in atomic force microscopy
    Soussen, Charles
    Brie, David
    Gaboriaud, Fabien
    Kessler, Cyril
    2008 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1-4, 2008, : 1605 - +
  • [22] Topographic Contrast in Force Modulation Atomic Force Microscopy Images
    Yang, Chunlai
    Zheng, Cheng
    Chen, Yuhang
    Huang, Wenhao
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2012, 51 (05)
  • [23] Study of the porosity of calcified chicken eggshell using atomic force microscopy and image processing
    Arzate-Vazquez, I
    Mendez-Mendez, J., V
    Flores-Johnson, E. A.
    Nicolas-Bermudez, J.
    Chanona-Perez, J. J.
    Santiago-Cortes, E.
    MICRON, 2019, 118 : 50 - 57
  • [24] On the recovery of the spectroscopic image in atomic force microscopy
    Sokolov, IY
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1996, 14 (05): : 2901 - 2904
  • [25] Atomic force microscopy images of lyotropic lamellar phases
    Garza, C.
    Thieghi, L. T.
    Castillo, R.
    JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (05):
  • [26] Interpreting scanning tunneling and atomic force microscopy images
    Whangbo, MH
    Ren, J
    Magonov, SN
    Bengel, H
    PHYSICS AND CHEMISTRY OF LOW-DIMENSIONAL INORGANIC CONDUCTORS, 1996, 354 : 241 - 253
  • [27] Novel fractal characteristic of atomic force microscopy images
    Starodubtseva, Maria N.
    Starodubtsev, Ivan E.
    Starodubtsev, Evgenii G.
    MICRON, 2017, 96 : 96 - 102
  • [28] LIMITS OF RESOLUTION IN ATOMIC FORCE MICROSCOPY IMAGES OF GRAPHITE
    ZHONG, W
    OVERNEY, G
    TOMANEK, D
    EUROPHYSICS LETTERS, 1991, 15 (01): : 49 - 54
  • [29] On machine learning analysis of atomic force microscopy images for image classification, sample surface recognition
    Sokolov, I.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (15) : 11263 - 11270
  • [30] AUTOMATED LINE FLATTENING OF ATOMIC FORCE MICROSCOPY IMAGES
    Tsaftaris, S. A.
    Zujovic, J.
    Katsaggelos, A. K.
    2008 15TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-5, 2008, : 2968 - 2971