Traffic Agents Trajectory Prediction Based on Spatial-Temporal Interaction Attention

被引:0
|
作者
Xie, Jincan [1 ,2 ]
Li, Shuang [1 ,2 ]
Liu, Chunsheng [1 ,2 ]
机构
[1] Qilu Univ Technol, Shandong Acad Sci, Sch Informat & Automat Engn, Jinan 250353, Peoples R China
[2] Shandong Univ, Sch Control Sci & Engn, Jinan 250061, Peoples R China
基金
中国国家自然科学基金;
关键词
trajectory prediction; spatial-temporal interaction; social interaction;
D O I
10.3390/s23187830
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Trajectory prediction aims to predict the movement intention of traffic participants in the future based on the historical observation trajectories. For traffic scenarios, pedestrians, vehicles and other traffic participants have social interaction of surrounding traffic participants in both time and spatial dimensions. Most previous studies only use pooling methods to simulate the interaction process between participants and cannot fully capture the spatio-temporal dependence, possibly accumulating errors with the increase in prediction time. To overcome these problems, we propose the Spatial-Temporal Interaction Attention-based Trajectory Prediction Network (STIA-TPNet), which can effectively model the spatial-temporal interaction information. Based on trajectory feature extraction, the novel Spatial-Temporal Interaction Attention Module (STIA Module) is proposed to extract the interaction relationships between traffic participants, including temporal interaction attention, spatial interaction attention, and spatio-temporal attention fusion. By adaptive allocation of attention weights, temporal interaction attention is a temporal attention mechanism used to capture the movement pattern of each traffic participant in the scene, which can learn the importance of historical trajectories at different moments to future behaviors. Since the participants number in recent traffic scenes dynamically changes, the spatial interaction attention is designed to abstract the traffic participants in the scene into graph nodes, and abstract the social interaction between participants into graph edges. Coupling the temporal and spatial interaction attentions can adaptively model the temporal-spatial information and achieve accurate trajectory prediction. By performing experiments on the INTERACTION dataset and the UTP (Unmanned Aerial Vehicle-based Trajectory Prediction) dataset, the experimental results show that the proposed method significantly improves the accuracy of trajectory prediction and outperforms the representative methods in comparison.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Attention Mechanism With Spatial-Temporal Joint Model for Traffic Flow Speed Prediction
    Hu, Hexuan
    Lin, Zhenzhou
    Hu, Qiang
    Zhang, Ye
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (09) : 16612 - 16621
  • [42] Traffic prediction based on spatial-temporal disentangled generative models
    Gao, Xinyu
    Li, Hongtao
    Zhang, Haina
    Xue, Jiang
    Sun, Shaolong
    Liu, Wenzheng
    INFORMATION SCIENCES, 2024, 680
  • [43] Traffic Prediction on Communication Network based on Spatial-Temporal Information
    Ma, Yue
    Peng, Bo
    Ma, Mingjun
    Wang, Yifei
    Xia, Ding
    2020 22ND INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION TECHNOLOGY (ICACT): DIGITAL SECURITY GLOBAL AGENDA FOR SAFE SOCIETY!, 2020, : 304 - 309
  • [44] Traffic Spatial-Temporal Prediction Based on Neural Architecture Search
    Zhang, Dongran
    Luo, Gang
    Li, Jun
    PROCEEDINGS OF 2023 18TH INTERNATIONAL SYMPOSIUM ON SPATIAL AND TEMPORAL DATA, SSTD 2023, 2023, : 21 - 30
  • [45] Pedestrian Trajectory Prediction using BiLSTM with Spatial-Temporal Attention and Sparse Motion Fields
    Khel, Muhammad Haris Kaka
    Greaney, Paul
    McAfee, Marion
    Moffett, Sandra
    Meehan, Kevin
    2023 34TH IRISH SIGNALS AND SYSTEMS CONFERENCE, ISSC, 2023,
  • [46] Spatial-temporal graph neural network based on gated convolution and topological attention for traffic flow prediction
    Bai, Dewei
    Xia, Dawen
    Huang, Dan
    Hu, Yang
    Li, Yantao
    Li, Huaqing
    APPLIED INTELLIGENCE, 2023, 53 (24) : 30843 - 30864
  • [47] Spatial-temporal graph neural network based on gated convolution and topological attention for traffic flow prediction
    Dewei Bai
    Dawen Xia
    Dan Huang
    Yang Hu
    Yantao Li
    Huaqing Li
    Applied Intelligence, 2023, 53 : 30843 - 30864
  • [48] Spatial-Temporal Graph Attention Model on Traffic Forecasting
    Zhang, Xinlan
    Zhang, Zhenguo
    Jin, Xiaofeng
    2020 13TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2020), 2020, : 999 - 1003
  • [49] Sampling Spatial-Temporal Attention Network for Traffic Forecasting
    Chen, Mao
    Xu, Yi
    Han, Liangzhe
    Sun, Leilei
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT II, KSEM 2023, 2023, 14118 : 121 - 136
  • [50] Trajectory prediction for autonomous driving based on multiscale spatial-temporal graph
    Tang, Luqi
    Yan, Fuwu
    Zou, Bin
    Li, Wenbo
    Lv, Chen
    Wang, Kewei
    IET INTELLIGENT TRANSPORT SYSTEMS, 2023, 17 (02) : 386 - 399