Traffic Agents Trajectory Prediction Based on Spatial-Temporal Interaction Attention

被引:0
|
作者
Xie, Jincan [1 ,2 ]
Li, Shuang [1 ,2 ]
Liu, Chunsheng [1 ,2 ]
机构
[1] Qilu Univ Technol, Shandong Acad Sci, Sch Informat & Automat Engn, Jinan 250353, Peoples R China
[2] Shandong Univ, Sch Control Sci & Engn, Jinan 250061, Peoples R China
基金
中国国家自然科学基金;
关键词
trajectory prediction; spatial-temporal interaction; social interaction;
D O I
10.3390/s23187830
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Trajectory prediction aims to predict the movement intention of traffic participants in the future based on the historical observation trajectories. For traffic scenarios, pedestrians, vehicles and other traffic participants have social interaction of surrounding traffic participants in both time and spatial dimensions. Most previous studies only use pooling methods to simulate the interaction process between participants and cannot fully capture the spatio-temporal dependence, possibly accumulating errors with the increase in prediction time. To overcome these problems, we propose the Spatial-Temporal Interaction Attention-based Trajectory Prediction Network (STIA-TPNet), which can effectively model the spatial-temporal interaction information. Based on trajectory feature extraction, the novel Spatial-Temporal Interaction Attention Module (STIA Module) is proposed to extract the interaction relationships between traffic participants, including temporal interaction attention, spatial interaction attention, and spatio-temporal attention fusion. By adaptive allocation of attention weights, temporal interaction attention is a temporal attention mechanism used to capture the movement pattern of each traffic participant in the scene, which can learn the importance of historical trajectories at different moments to future behaviors. Since the participants number in recent traffic scenes dynamically changes, the spatial interaction attention is designed to abstract the traffic participants in the scene into graph nodes, and abstract the social interaction between participants into graph edges. Coupling the temporal and spatial interaction attentions can adaptively model the temporal-spatial information and achieve accurate trajectory prediction. By performing experiments on the INTERACTION dataset and the UTP (Unmanned Aerial Vehicle-based Trajectory Prediction) dataset, the experimental results show that the proposed method significantly improves the accuracy of trajectory prediction and outperforms the representative methods in comparison.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Channel attention-based spatial-temporal graph neural networks for traffic prediction
    Wang, Bin
    Gao, Fanghong
    Tong, Le
    Zhang, Qian
    Zhu, Sulei
    DATA TECHNOLOGIES AND APPLICATIONS, 2023, 58 (01) : 81 - 94
  • [22] Multiple Information Spatial-Temporal Attention based Graph Convolution Network for traffic prediction
    Tao, Shiming
    Zhang, Huyin
    Yang, Fei
    Wu, Yonghao
    Li, Cong
    APPLIED SOFT COMPUTING, 2023, 136
  • [23] Extraction of Traffic Status Based on Spatial-Temporal Trajectory Reconstruction
    Wang, Qi
    Hu, Jianming
    Zhang, Jiajie
    Zhang, Yi
    ADVANCED FORUM ON TRANSPORTATION OF CHINA: PROCEEDINGS OF THE SIXTH ADVANCED FORUM ON TRANSPORTATION OF CHINA, 2010, 2010, : 221 - 228
  • [24] Adaptive spatial-temporal graph attention network for traffic speed prediction
    张玺君
    ZHANG Baoqi
    ZHANG Hong
    NIE Shengyuan
    ZHANG Xianli
    High Technology Letters, 2024, 30 (03) : 221 - 230
  • [25] Adaptive spatial-temporal graph attention network for traffic speed prediction
    Zhang, Xijun
    Zhang, Baoqi
    Zhang, Hong
    Nie, Shengyuan
    Zhang, Xianli
    High Technology Letters, 2024, 30 (03) : 221 - 230
  • [26] Modeling Global Spatial-Temporal Graph Attention Network for Traffic Prediction
    Sun, Bin
    Zhao, Duan
    Shi, Xinguo
    He, Yongxin
    IEEE ACCESS, 2021, 9 : 8581 - 8594
  • [27] Unified Spatial-Temporal Neighbor Attention Network for Dynamic Traffic Prediction
    Long, Wangchen
    Xiao, Zhu
    Wang, Dong
    Jiang, Hongbo
    Chen, Jie
    Li, You
    Alazab, Mamoun
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (02) : 1515 - 1529
  • [28] Trajectory Prediction with Attention-Based Spatial-Temporal Graph Convolutional Networks for Autonomous Driving
    Li, Hongbo
    Ren, Yilong
    Li, Kaixuan
    Chao, Wenjie
    APPLIED SCIENCES-BASEL, 2023, 13 (23):
  • [29] Trajectory Prediction for Autonomous Driving Using Spatial-Temporal Graph Attention Transformer
    Zhang, Kunpeng
    Feng, Xiaoliang
    Wu, Lan
    He, Zhengbing
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (11) : 22343 - 22353
  • [30] Multi-Modal Pedestrian Trajectory Prediction for Edge Agents Based on Spatial-Temporal Graph
    Zou, Xiangyu
    Sun, Bin
    Zhao, Duan
    Zhu, Zongwei
    Zhao, Jinjin
    He, Yongxin
    IEEE ACCESS, 2020, 8 : 83321 - 83332