Trajectory prediction for autonomous driving based on multiscale spatial-temporal graph

被引:12
|
作者
Tang, Luqi [1 ,2 ,3 ]
Yan, Fuwu [1 ,2 ,3 ]
Zou, Bin [1 ,2 ,3 ]
Li, Wenbo [1 ,2 ,3 ]
Lv, Chen [4 ]
Wang, Kewei [5 ]
机构
[1] Wuhan Univ Technol, Hubei Key Lab Adv Technol Automot Components, Wuhan 430070, Peoples R China
[2] Wuhan Univ Technol, Hubei Collaborat Innovat Ctr Automot Components T, Wuhan, Peoples R China
[3] Hubei Res Ctr New Energy & Intelligent Connected, Wuhan, Peoples R China
[4] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore, Singapore
[5] Dongfeng UShating Technol Ca Ltd, Wuhan, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Compendex;
D O I
10.1049/itr2.12265
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Predicting the trajectories of surrounding heterogeneous traffic agents is critical for the decision making of an autonomous vehicle. Recently, many existing prediction methods have focused on capturing interactions between agents to improve prediction accuracy. However, few methods pay attention to the temporal dependencies of interactions that there are different behavioural interactions at different time scales. In this work, the authors propose a novel framework for trajectory prediction by stacking spatial-temporal layers at multiple time scales. Firstly, the authors design three kinds of adjacency matrices to capture more genuine spatial dependencies rather than a fixed adjacency matrix. Then, a novel dilated temporal convolution is developed to handle temporal dependencies. Benefiting from the dilated temporal convolution, the authors' graph convolution is able to aggregate information from neighbours at different time scales by stacking spatial-temporal layers. Finally, a long short-term memory networks (LSTM)-based trajectory generation module is used to receive the features extracted by the spatial-temporal graph and generate the future trajectories for all observed traffic agents simultaneously. The authors evaluate the proposed model on the publicly available next generation simulation dataset (NGSIM), the highway drone dataset (highD), and ApolloScape datasets. The results demonstrate that the authors' approach achieves state-of-the-art performance. Furthermore, the proposed method ranked #1 on the leaderboard of the ApolloScape trajectory competition in March 2021.
引用
收藏
页码:386 / 399
页数:14
相关论文
共 50 条
  • [1] Trajectory Prediction for Autonomous Driving Using Spatial-Temporal Graph Attention Transformer
    Zhang, Kunpeng
    Feng, Xiaoliang
    Wu, Lan
    He, Zhengbing
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (11) : 22343 - 22353
  • [2] Trajectory Prediction with Attention-Based Spatial-Temporal Graph Convolutional Networks for Autonomous Driving
    Li, Hongbo
    Ren, Yilong
    Li, Kaixuan
    Chao, Wenjie
    APPLIED SCIENCES-BASEL, 2023, 13 (23):
  • [3] Graph-Based Spatial-Temporal Convolutional Network for Vehicle Trajectory Prediction in Autonomous Driving
    Sheng, Zihao
    Xu, Yunwen
    Xue, Shibei
    Li, Dewei
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (10) : 17654 - 17665
  • [4] Autonomous Driving Decision-Making Method Based on Spatial-Temporal Fusion Trajectory Prediction
    Luo, Yutao
    Sun, Aining
    Hong, Jiawei
    Applied Sciences (Switzerland), 2024, 14 (24):
  • [5] Multimodal Pedestrian Trajectory Prediction Based on Relative Interactive Spatial-Temporal Graph
    Zhao, Duan
    Li, Tao
    Zou, Xiangyu
    He, Yaoyi
    Zhao, Lichang
    Chen, Hui
    Zhuo, Minmin
    IEEE ACCESS, 2022, 10 : 88707 - 88718
  • [6] Sparse Transformer Network With Spatial-Temporal Graph for Pedestrian Trajectory Prediction
    Gao, Long
    Gu, Xiang
    Chen, Feng
    Wang, Jin
    IEEE Access, 2024, 12 : 144725 - 144737
  • [7] Improving Location Prediction Based on the Spatial-Temporal Trajectory
    Li, Ping
    Zhu, Xinning
    Miao, Jiansong
    BIG DATA COMPUTING AND COMMUNICATIONS, (BIGCOM 2016), 2016, 9784 : 443 - 452
  • [8] Spatial-Temporal Multiscale Fusion Graph Neural Network for Traffic Flow Prediction
    Hou, Hongxin
    Ning, Nianwen
    Shi, Huaguang
    Zhou, Yi
    2022 IEEE 7th International Conference on Intelligent Transportation Engineering, ICITE 2022, 2022, : 272 - 277
  • [9] Spatial-Temporal Multiscale Fusion Graph Neural Network for Traffic Flow Prediction
    Hou, Hongxin
    Ning, Nianwen
    Shi, Huaguang
    Zhou, Yi
    2022 IEEE 7TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION ENGINEERING, ICITE, 2022, : 272 - 277
  • [10] Multi-Modal Pedestrian Trajectory Prediction for Edge Agents Based on Spatial-Temporal Graph
    Zou, Xiangyu
    Sun, Bin
    Zhao, Duan
    Zhu, Zongwei
    Zhao, Jinjin
    He, Yongxin
    IEEE ACCESS, 2020, 8 : 83321 - 83332