Automated multifocus pollen detection using deep learning

被引:2
|
作者
Gallardo, Ramon [1 ]
Garcia-Orellana, Carlos J. [1 ]
Gonzalez-Velasco, Horacio M. [1 ]
Garcia-Manso, Antonio [1 ]
Tormo-Molina, Rafael [2 ]
Macias-Macias, Miguel [1 ]
Abengozar, Eugenio [2 ]
机构
[1] Univ Extremadura, Inst Comp Cient Avanzada, Ave Elvas S-N, Badajoz 06006, Spain
[2] Univ Extremadura, Fac Ciencias, Ave Elvas S-N, Badajoz 06006, Spain
关键词
Bright-field microscopy; Pollen recognition; Deep learning; Multifocus microscopy; Airborne pollen;
D O I
10.1007/s11042-024-18450-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Pollen-induced allergies affect a significant part of the population in developed countries. Current palynological analysis in Europe is a slow and laborious process which provides pollen information in a weekly-cycle basis. In this paper, we describe a system that allows to locate and classify, in a single step, the pollen grains present in standard glass microscope slides. Besides, processing the samples in the z-axis allows us to increase the probability of detecting grains compared to solutions based on one image per sample. Our system has been trained to recognise 11 pollen types, achieving 97.6 % success rate locating grains, of which 96.3 % are also correctly identified (0.956 macro-F1 score), and with a 2.4 % grains lost. Our results indicate that deep learning provides a robust framework to address automated identification of various pollen types, facilitating their daily measurement.
引用
收藏
页码:72097 / 72112
页数:16
相关论文
共 50 条
  • [11] Automated corrosion detection using deep learning and computer vision
    Nabizadeh E.
    Parghi A.
    Asian Journal of Civil Engineering, 2023, 24 (8) : 2911 - 2923
  • [12] Automated Cephalometric Landmark Detection Using Deep Reinforcement Learning
    Hong, Woojae
    Kim, Seong-Min
    Choi, Joongyeon
    Ahn, Jaemyung
    Paeng, Jun-Young
    Kim, Hyunggun
    JOURNAL OF CRANIOFACIAL SURGERY, 2023, 34 (08) : 2336 - 2342
  • [13] Automated Corrosion Detection Using Crowdsourced Training for Deep Learning
    Nash, W. T.
    Powell, C. J.
    Drummond, T.
    Birbilis, N.
    CORROSION, 2020, 76 (02) : 135 - 141
  • [14] Automated Polyp Detection Using Deep Learning: Leveling the Field
    Karnes, William E.
    Alkayali, Talal
    Mittal, Mohit
    Patel, Anish
    Kim, Junhee
    Chang, Kenneth J.
    Ninh, Andrew Q.
    Urban, Gregor
    Baldi, Pierre
    GASTROINTESTINAL ENDOSCOPY, 2017, 85 (05) : AB376 - AB377
  • [15] Automated Detection and Segmentation of Lung Tumors Using Deep Learning
    Owens, C.
    Rhee, D.
    Fuentes, D.
    Peterson, C.
    Li, J.
    Salehpour, M.
    Court, L.
    Yang, J.
    MEDICAL PHYSICS, 2019, 46 (06) : E447 - E448
  • [16] Automated Pavement Cracks Detection and Classification Using Deep Learning
    Nafaa, Selvia
    Ashour, Karim
    Mohamed, Rana
    Essam, Hafsa
    Emad, Doaa
    Elhenawy, Mohammed
    Ashqar, Huthaifa I.
    Hassan, Abdallah A.
    Alhadidi, Taqwa I.
    2024 IEEE 3RD INTERNATIONAL CONFERENCE ON COMPUTING AND MACHINE INTELLIGENCE, ICMI 2024, 2024,
  • [17] Automated Anomaly Detection in Histology Images using Deep Learning
    Shelton, Lillie
    Soans, Rajath
    Shah, Tosha
    Forest, Thomas
    Janardhan, Kyathanahalli
    Napolitano, Michael
    Gonzalez, Raymond
    Carlson, Grady
    Shah, Jyoti K.
    Chen, Antong
    DIGITAL AND COMPUTATIONAL PATHOLOGY, MEDICAL IMAGING 2024, 2024, 12933
  • [18] Automated Hypertensive Retinopathy Detection Method Using Deep Learning
    Yashwanth, Nampalli Sai
    Anvesh, Kachi
    Varshitha, Puttapaka
    Prasad, Y. Varun
    2024 INTERNATIONAL CONFERENCE ON SOCIAL AND SUSTAINABLE INNOVATIONS IN TECHNOLOGY AND ENGINEERING, SASI-ITE 2024, 2024, : 147 - 151
  • [19] Automated detection & classification of knee arthroplasty using deep learning
    Yi, Paul H.
    Wei, Jinchi
    Kim, Tae Kyung
    Sair, Haris, I
    Hui, Ferdinand K.
    Hager, Gregory D.
    Fritz, Jan
    Oni, Julius K.
    KNEE, 2020, 27 (02): : 535 - 542
  • [20] AUTOMATED APNEA AND HYPOPNEA EVENT DETECTION USING DEEP LEARNING
    Zhang, L.
    Fabbri, D.
    Upender, R.
    Kent, D.
    SLEEP, 2018, 41 : A119 - A120