Automated multifocus pollen detection using deep learning

被引:2
|
作者
Gallardo, Ramon [1 ]
Garcia-Orellana, Carlos J. [1 ]
Gonzalez-Velasco, Horacio M. [1 ]
Garcia-Manso, Antonio [1 ]
Tormo-Molina, Rafael [2 ]
Macias-Macias, Miguel [1 ]
Abengozar, Eugenio [2 ]
机构
[1] Univ Extremadura, Inst Comp Cient Avanzada, Ave Elvas S-N, Badajoz 06006, Spain
[2] Univ Extremadura, Fac Ciencias, Ave Elvas S-N, Badajoz 06006, Spain
关键词
Bright-field microscopy; Pollen recognition; Deep learning; Multifocus microscopy; Airborne pollen;
D O I
10.1007/s11042-024-18450-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Pollen-induced allergies affect a significant part of the population in developed countries. Current palynological analysis in Europe is a slow and laborious process which provides pollen information in a weekly-cycle basis. In this paper, we describe a system that allows to locate and classify, in a single step, the pollen grains present in standard glass microscope slides. Besides, processing the samples in the z-axis allows us to increase the probability of detecting grains compared to solutions based on one image per sample. Our system has been trained to recognise 11 pollen types, achieving 97.6 % success rate locating grains, of which 96.3 % are also correctly identified (0.956 macro-F1 score), and with a 2.4 % grains lost. Our results indicate that deep learning provides a robust framework to address automated identification of various pollen types, facilitating their daily measurement.
引用
收藏
页码:72097 / 72112
页数:16
相关论文
共 50 条
  • [21] Automated detection of schizophrenia using deep learning: a review for the last decade
    Sharma, Manish
    Patel, Ruchit Kumar
    Garg, Akshat
    SanTan, Ru
    Acharya, U. Rajendra
    PHYSIOLOGICAL MEASUREMENT, 2023, 44 (03)
  • [22] Automated detection and classification of early AMD biomarkers using deep learning
    Sajib Saha
    Marco Nassisi
    Mo Wang
    Sophiana Lindenberg
    Yogi kanagasingam
    Srinivas Sadda
    Zhihong Jewel Hu
    Scientific Reports, 9
  • [23] Automated Vulnerability Detection in Source Code Using Deep Representation Learning
    Russell, Rebecca L.
    Kim, Louis
    Hamilton, Lei H.
    Lazovich, Tomo
    Harer, Jacob A.
    Ozdemir, Onur
    Ellingwood, Paul M.
    McConley, Marc W.
    2018 17TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2018, : 757 - 762
  • [24] Automated abnormality detection in lower extremity radiographs using deep learning
    Maya Varma
    Mandy Lu
    Rachel Gardner
    Jared Dunnmon
    Nishith Khandwala
    Pranav Rajpurkar
    Jin Long
    Christopher Beaulieu
    Katie Shpanskaya
    Li Fei-Fei
    Matthew P. Lungren
    Bhavik N. Patel
    Nature Machine Intelligence, 2019, 1 : 578 - 583
  • [25] Automated cyberattack detection using optimal ensemble deep learning model
    Vaiyapuri, Thavavel
    Shankar, K.
    Rajendran, Surendran
    Kumar, Sachin
    Gaur, Vimal
    Gupta, Deepak
    Alharbi, Meshal
    TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2024, 35 (04)
  • [26] Automated lesion detection in cotton leaf visuals using deep learning
    Akbar, Frnaz
    Aribi, Yassine
    Usman, Syed Muhammad
    Faraj, Hamzah
    Murayr, Ahmed
    Alasmari, Fawaz
    Khalid, Shehzad
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [27] Automated detection and classification of early AMD biomarkers using deep learning
    Saha, Sajib
    Nassisi, Marco
    Wang, Mo
    Lindenberg, Sophiana
    Kanagasingam, Yogi
    Sadda, Srinivas
    Hu, Zhihong Jewel
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [28] Automated abnormality detection in lower extremity radiographs using deep learning
    Varma, Maya
    Lu, Mandy
    Gardner, Rachel
    Dunnmon, Jared
    Khandwala, Nishith
    Rajpurkar, Pranav
    Long, Jin
    Beaulieu, Christopher
    Shpanskaya, Katie
    Li Fei-Fei
    Lungren, Matthew P.
    Patel, Bhavik N.
    NATURE MACHINE INTELLIGENCE, 2019, 1 (12) : 578 - 583
  • [29] Automated detection of glaucoma using retinal images with interpretable deep learning
    Mehta, Parmita
    Lee, Aaron Y.
    Wen, Joanne
    Bannit, Michael R.
    Chen, Philip P.
    Bojikian, Karine D.
    Petersen, Christine
    Egan, Catherine A.
    Lee, Su-In
    Balazinska, Magdalena
    Rokem, Ariel
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2020, 61 (07)
  • [30] Automated detection of severe diabetic retinopathy using deep learning method
    Xiao Zhang
    Fan li
    Donghong Li
    Qijie Wei
    Xiaoxu Han
    Bilei Zhang
    Huan Chen
    Yongpeng Zhang
    Bin Mo
    Bojie Hu
    Dayong Ding
    Xirong Li
    Weihong Yu
    Youxin Chen
    Graefe's Archive for Clinical and Experimental Ophthalmology, 2022, 260 : 849 - 856