CO Binding Energy is an Incomplete Descriptor of Cu-Based Catalysts for the Electrochemical CO2 Reduction Reaction

被引:13
|
作者
Gao, Wenqiang [1 ,2 ]
Xu, Yifei [1 ,2 ]
Xiong, Haocheng [1 ,3 ]
Chang, Xiaoxia [1 ,2 ]
Lu, Qi [1 ,3 ]
Xu, Bingjun [1 ,2 ]
机构
[1] Peking Univ, Coll Chem & Mol Engn, Beijing 100871, Peoples R China
[2] Beijing Natl Lab Mol Sci, Beijing 100871, Peoples R China
[3] Tsinghua Univ, Dept Chem Engn, State Key Lab Chem Engn, Beijing 100084, Peoples R China
基金
中国博士后科学基金;
关键词
CO Adsorption Enthalpy; CO2; Electroreduction; Cu-Based Catalysts; Surface Enhanced Infrared Absorption Spectroscopy; CARBON-DIOXIDE; ADSORPTION; ELECTROREDUCTION; SELECTIVITY; CHALLENGES; WATER;
D O I
10.1002/anie.202313798
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
CO binding energy has been employed as a descriptor in the catalyst design for the electrochemical CO2 reduction reactions (CO2RR). The reliability of the descriptor has yet been experimentally verified due to the lack of suitable methods to determine CO binding energies. In this work, we determined the standard CO adsorption enthalpies ( ) of undoped and doped oxide-derived Cu (OD-Cu) samples, and for the first time established the correlation of with the Faradaic efficiencies (FE) for C2+ products. A clear volcano shaped dependence of the FE for C2+ products on is observed on OD-Cu catalysts prepared with the same hydrothermal durations, however, the trend becomes less clear when all catalysts investigated are taken into account. The relative abundance of Cu sites active for the CO2-to-CO conversion and the further reduction of CO is identified as another key descriptor.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Evaluating the stability and activity of dilute Cu-based alloys for electrochemical CO2 reduction
    Weitzner, Stephen E.
    Akhade, Sneha A.
    Kashi, Ajay R.
    Qi, Zhen
    Buckley, Aya K.
    Huo, Ziyang
    Ma, Sichao
    Biener, Monika
    Wood, Brandon C.
    Kuhl, Kendra P.
    Varley, Joel B.
    Biener, Juergen
    JOURNAL OF CHEMICAL PHYSICS, 2021, 155 (11):
  • [42] Structure-performance relationship of Cu-based nanocatalyst for electrochemical CO2 reduction
    Yu F.
    Zhang L.
    Yu, Fengshou (yfsh@hebut.edu.cn), 1815, Materials China (72): : 1815 - 1824
  • [43] In Situ Raman Spectroscopic Studies of Electrochemical CO2 Reduction on Cu-Based Electrodes
    Du, Zi-Yu
    Wang, Kun
    Li, Si-Bo
    Xie, Yi-Meng
    Tian, Jing-Hua
    Zheng, Qing-Na
    Ip, Weng Fai
    Zhang, Hua
    Li, Jian-Feng
    Tian, Zhong-Qun
    JOURNAL OF PHYSICAL CHEMISTRY C, 2024, 128 (28): : 11741 - 11755
  • [44] Cu-based hybrid nanocrystals for electrochemical CO2 conversion
    Buonsanti, Raffaella
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [45] Progress in Cu-based electrocatalysts for electrochemical CO2 reduction to C2+ products
    Cui, Shaoying
    Li, Siqi
    Deng, Renzhi
    Wei, Lixin
    Yang, Shucheng
    Dai, Shiwei
    Wang, Fanan
    Liu, Song
    Huang, Yanqiang
    CATALYSIS SCIENCE & TECHNOLOGY, 2024, 14 (10) : 2697 - 2716
  • [46] Insights into selectivity modulation of electrochemical CO2 reduction reactions over Cu-based catalysts in terms of the key intermediates
    Gong, Yue
    Wang, Yanjie
    He, Tao
    CATALYSIS REVIEWS-SCIENCE AND ENGINEERING, 2023, 66 (05): : 1828 - 1869
  • [47] Nitrogen-Based Catalysts for the Electrochemical Reduction of CO2 to CO
    Tornow, Claire E.
    Thorson, Michael R.
    Ma, Sichao
    Gewirth, Andrew A.
    Kenis, Paul J. A.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (48) : 19520 - 19523
  • [48] Recent progress in Cu-based electrocatalysts for CO2 reduction
    Xiong, Ruo-Zheng
    Xu, Hui-Min
    Zhu, Hong-Rui
    Zhang, Zhi-Jie
    Li, Gao-Ren
    CHEMICAL ENGINEERING JOURNAL, 2025, 505
  • [49] An overview of Cu-based heterogeneous electrocatalysts for CO2 reduction
    Zhao, Jian
    Xue, Song
    Barber, James
    Zhou, Yiwei
    Meng, Jie
    Ke, Xuebin
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (09) : 4700 - 4734
  • [50] Harnessing the Potential of Machine Learning to Optimize the Activity of Cu-Based Dual Atom Catalysts for CO2 Reduction Reaction
    Das, Amitabha
    Roy, Diptendu
    Manna, Souvik
    Pathak, Biswarup
    ACS MATERIALS LETTERS, 2024, 6 (12): : 5316 - 5324