Progress in Cu-based electrocatalysts for electrochemical CO2 reduction to C2+ products

被引:3
|
作者
Cui, Shaoying [1 ]
Li, Siqi [1 ]
Deng, Renzhi [2 ]
Wei, Lixin [1 ]
Yang, Shucheng [1 ]
Dai, Shiwei [2 ]
Wang, Fanan [2 ]
Liu, Song [1 ]
Huang, Yanqiang [3 ]
机构
[1] Northeast Forestry Univ, Coll Chem Chem Engn & Resource Utilizat, Harbin 150040, Peoples R China
[2] Fujian Univ Technol, Inst Biol & Chem, Fuzhou 350118, Peoples R China
[3] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, Dalian 116023, Peoples R China
基金
中国博士后科学基金;
关键词
ACTIVE-SITE MOTIFS; CARBON-DIOXIDE; IN-SITU; SELECTIVE ELECTROREDUCTION; COPPER-CATALYSTS; THEORETICAL INSIGHTS; OXIDATION-STATE; ETHYLENE; DESIGN; MECHANISM;
D O I
10.1039/d4cy00101j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrochemical carbon dioxide reduction reaction (CO2RR) into multi-carbon (C2+) products with higher energy density and wider applicability is a promising route for CO2 utilization. However, the selectivity and yield of C2+ products remain challenging owing to the involvement of multiple electron transfer and the competing reaction, i.e., the hydrogen evolution reaction (HER). Here, we review recent progress in Cu-based electrocatalysts for CO2RR to C2+ products. First, possible reaction pathways for CO2RR to C2+ products are discussed, focusing on the mechanism of C-C bond formation. Then, strategies of Cu-based electrocatalysts for CO2RR into C2+ products are summarized, the key of which is the modulation in C-C coupling of intermediates, leading to different product selectivities. In addition, the progress in in situ techniques for the elucidation of the mechanism is underlined, which is conducive to the precise design of efficient electrocatalysts. The outlooks along with current challenges are finally proposed for the future development of C2+-oriented CO2RR systems.
引用
收藏
页码:2697 / 2716
页数:20
相关论文
共 50 条
  • [1] Recent progress in structured Cu-based catalysts for electrochemical CO2 reduction to C2+ products
    Zhang X.
    Huang Y.
    Shao X.
    Li J.
    Li F.
    Yue Q.
    Wang Z.
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2021, 40 (07): : 3736 - 3746
  • [2] Recent Advances and Perspectives of Electrochemical CO2 Reduction Toward C2+ Products on Cu-Based Catalysts
    Wang, Xiaodeng
    Hu, Qi
    Li, Guodong
    Yang, Hengpan
    He, Chuanxin
    ELECTROCHEMICAL ENERGY REVIEWS, 2022, 5 (SUPPL 2)
  • [3] Recent Advances and Perspectives of Electrochemical CO2 Reduction Toward C2+ Products on Cu-Based Catalysts
    Xiaodeng Wang
    Qi Hu
    Guodong Li
    Hengpan Yang
    Chuanxin He
    Electrochemical Energy Reviews, 2022, 5
  • [4] Electrolyte manipulation on Cu-based electrocatalysts for electrochemical CO2 reduction
    Zhou, Hexin
    Xi, Wanlong
    Yang, Peng
    Huang, Huiting
    Tian, Jia
    Ratova, Marina
    Wu, Dan
    JOURNAL OF ENERGY CHEMISTRY, 2024, 99 : 201 - 222
  • [5] Cu-based bimetallic electrocatalysts for CO2 reduction
    Jia, Yufei
    Li, Fei
    Fan, Ke
    Sun, Licheng
    ADVANCED POWDER MATERIALS, 2022, 1 (01):
  • [6] Correlating the valence state of a Cu-based electrocatalyst for CO2 reduction to C2+
    Li, Yifan
    Hong, Wanqing
    Chen, Shiyi
    Duan, Rui
    Chai, Sini
    Du, Wenping
    Yang, Jian
    Mao, Junjie
    CHEMICAL COMMUNICATIONS, 2023, 59 (78) : 11716 - 11719
  • [7] Recent Advances of Core-Shell Cu-Based Catalysts for the Reduction of CO2 to C2+ Products
    Li, Lamei
    Su, Jiaqi
    Lu, Jianmei
    Shao, Qi
    CHEMISTRY-AN ASIAN JOURNAL, 2023, 18 (05)
  • [8] Organic molecules involved in Cu-based electrocatalysts for selective CO2 reduction to C2+products
    Chen, Ping
    Wu, Yuming
    Rufford, Thomas E.
    Wang, Lianzhou
    Wang, Geoff
    Wang, Zhiliang
    MATERIALS TODAY CHEMISTRY, 2023, 27
  • [9] Nature-Inspired Electrocatalysts for CO2 Reduction to C2+ Products
    Xu, Linlin
    Trogadas, Panagiotis
    Coppens, Marc-Olivier
    ADVANCED ENERGY MATERIALS, 2023, 13 (48)
  • [10] Impact of Pulsed Electrochemical Reduction of CO2 on the Formation of C2+ Products over Cu
    Kim, Chanyeon
    Weng, Lien-Chun
    Bell, Alexis T.
    ACS CATALYSIS, 2020, 10 (21): : 12403 - 12413