CO Binding Energy is an Incomplete Descriptor of Cu-Based Catalysts for the Electrochemical CO2 Reduction Reaction

被引:13
|
作者
Gao, Wenqiang [1 ,2 ]
Xu, Yifei [1 ,2 ]
Xiong, Haocheng [1 ,3 ]
Chang, Xiaoxia [1 ,2 ]
Lu, Qi [1 ,3 ]
Xu, Bingjun [1 ,2 ]
机构
[1] Peking Univ, Coll Chem & Mol Engn, Beijing 100871, Peoples R China
[2] Beijing Natl Lab Mol Sci, Beijing 100871, Peoples R China
[3] Tsinghua Univ, Dept Chem Engn, State Key Lab Chem Engn, Beijing 100084, Peoples R China
基金
中国博士后科学基金;
关键词
CO Adsorption Enthalpy; CO2; Electroreduction; Cu-Based Catalysts; Surface Enhanced Infrared Absorption Spectroscopy; CARBON-DIOXIDE; ADSORPTION; ELECTROREDUCTION; SELECTIVITY; CHALLENGES; WATER;
D O I
10.1002/anie.202313798
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
CO binding energy has been employed as a descriptor in the catalyst design for the electrochemical CO2 reduction reactions (CO2RR). The reliability of the descriptor has yet been experimentally verified due to the lack of suitable methods to determine CO binding energies. In this work, we determined the standard CO adsorption enthalpies ( ) of undoped and doped oxide-derived Cu (OD-Cu) samples, and for the first time established the correlation of with the Faradaic efficiencies (FE) for C2+ products. A clear volcano shaped dependence of the FE for C2+ products on is observed on OD-Cu catalysts prepared with the same hydrothermal durations, however, the trend becomes less clear when all catalysts investigated are taken into account. The relative abundance of Cu sites active for the CO2-to-CO conversion and the further reduction of CO is identified as another key descriptor.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Toward electrocatalytic CO2 reduction using heterogeneous approaches to Cu-based catalysts
    Johnson, Bruce M.
    Jones, Zach
    Berben, Louise A.
    Scott, Susannah L.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [32] Studies on the reaction of CO2 and glycerol to glycerol carbonate catalyzed by Cu-based catalysts
    Zhang, Juan
    He, Dehua
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [33] Design strategy of a Cu-based catalyst for optimizing the performance in the electrochemical CO2 reduction reaction to multicarbon alcohols
    Ni, Zhiyuan
    Wang, Peng
    Quan, Fan
    Guo, Rui
    Liu, Chunming
    Liu, Xuanwen
    Mu, Wenning
    Lei, Xuefei
    Li, Qingjun
    NANOSCALE, 2022, 14 (44) : 16376 - 16393
  • [34] Molecular enhancement of Cu-based catalysts for CO2 electroreduction
    Luo, Haiqiang
    Li, Bo
    Ma, Jian-Gong
    Cheng, Peng
    CHEMICAL COMMUNICATIONS, 2024, 60 (70) : 9298 - 9309
  • [35] Fe promoted Cu-based catalysts for hydrogenation of CO2
    Nomura, N
    Tagawa, T
    Goto, S
    ADVANCES IN CHEMICAL CONVERSIONS FOR MITIGATING CARBON DIOXIDE, 1998, 114 : 427 - 430
  • [36] Machine Learning-Assisted Screening of Cu-Based Trimetallic Catalysts for Electrochemical Conversion of CO2 to CO
    Xiong, Bo
    Liu, Jing
    Yang, Yingju
    Liu, Wei
    Chen, Man
    Bai, Hongcun
    ENERGY & FUELS, 2023, 38 (03) : 2074 - 2083
  • [37] Review on Cu-based catalysts for CO2 hydrogenation to methanol
    Jia, Chenxi
    Shao, Jing'ai
    Bai, Xiaowei
    Xiao, Jianjun
    Yang, Haiping
    Chen, Hanping
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2020, 39 (09): : 3658 - 3668
  • [38] Rates and reversibility of CO2 hydrogenation on Cu-based catalysts
    Lin, Ting C.
    Bhan, Aditya
    JOURNAL OF CATALYSIS, 2024, 429
  • [39] Stabilizing Cu-based catalyst for electrochemical CO2 reduction using incorporated Ni
    Li, Minglu
    Kuang, Siyu
    Jin, Yaxin
    Chi, Haoyuan
    Zhang, Sheng
    Ma, Xinbin
    CHEMICAL ENGINEERING JOURNAL, 2025, 506
  • [40] Cu-Based Organic-Inorganic Composite Materials for Electrochemical CO2 Reduction
    Hou, Man
    Shi, Yong Xia
    Li, Jun Jun
    Gao, Zengqiang
    Zhang, Zhicheng
    CHEMISTRY-AN ASIAN JOURNAL, 2022, 17 (18)