A scoping review of the clinical application of machine learning in data-driven population segmentation analysis

被引:4
|
作者
Liu, Pinyan [1 ]
Wang, Ziwen [1 ]
Liu, Nan [1 ,2 ,3 ]
Peres, Marco Aurelio
机构
[1] Duke NUS Med Sch, Ctr Quantitat Med, Singapore, Singapore
[2] Duke NUS Med Sch, Programme Hlth Serv & Syst Res, Singapore, Singapore
[3] Natl Univ Singapore, Inst Data Sci, Singapore, Singapore
关键词
population segmentation; machine learning; data analytics; population health; health services research; HEALTH DATA; SUBGROUPS; PATTERNS; CLUSTERS; CARE; PROFILES; BENEFITS;
D O I
10.1093/jamia/ocad111
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Objective Data-driven population segmentation is commonly used in clinical settings to separate the heterogeneous population into multiple relatively homogenous groups with similar healthcare features. In recent years, machine learning (ML) based segmentation algorithms have garnered interest for their potential to speed up and improve algorithm development across many phenotypes and healthcare situations. This study evaluates ML-based segmentation with respect to (1) the populations applied, (2) the segmentation details, and (3) the outcome evaluations. Materials and Methods MEDLINE, Embase, Web of Science, and Scopus were used following the PRISMA-ScR criteria. Peer-reviewed studies in the English language that used data-driven population segmentation analysis on structured data from January 2000 to October 2022 were included. Results We identified 6077 articles and included 79 for the final analysis. Data-driven population segmentation analysis was employed in various clinical settings. K-means clustering is the most prevalent unsupervised ML paradigm. The most common settings were healthcare institutions. The most common targeted population was the general population. Discussion Although all the studies did internal validation, only 11 papers (13.9%) did external validation, and 23 papers (29.1%) conducted methods comparison. The existing papers discussed little validating the robustness of ML modeling. Conclusion Existing ML applications on population segmentation need more evaluations regarding giving tailored, efficient integrated healthcare solutions compared to traditional segmentation analysis. Future ML applications in the field should emphasize methods' comparisons and external validation and investigate approaches to evaluate individual consistency using different methods.
引用
收藏
页码:1573 / 1582
页数:10
相关论文
共 50 条
  • [31] The rise of data-driven microscopy powered by machine learning
    Morgado, Leonor
    Gomez-de-Mariscal, Estibaliz
    Heil, Hannah S.
    Henriques, Ricardo
    [J]. JOURNAL OF MICROSCOPY, 2024, 295 (02) : 85 - 92
  • [32] Gait Data-Driven Analysis of Parkinson’s Disease Using Machine Learning
    Panda, Archana
    Bhuyan, Prachet
    [J]. EAI Endorsed Transactions on Pervasive Health and Technology, 2024, 10
  • [33] ANALYSIS OF PIEZOELECTRIC SEMICONDUCTORS VIA DATA-DRIVEN MACHINE-LEARNING TECHNIQUES
    Guo, Yu-ting
    Li, De-zhi
    Zhang, Chun-li
    [J]. PROCEEDINGS OF THE 2020 15TH SYMPOSIUM ON PIEZOELECTRCITY, ACOUSTIC WAVES AND DEVICE APPLICATIONS (SPAWDA), 2021, : 258 - 262
  • [34] Failure risk analysis of pipelines using data-driven machine learning algorithms
    Mazumder, Ram K.
    Salman, Abdullahi M.
    Li, Yue
    [J]. STRUCTURAL SAFETY, 2021, 89
  • [35] The drivers of systemic risk in financial networks: a data-driven machine learning analysis
    Alexandre, Michel
    Silva, Thiago Christiano
    Connaughton, Colm
    Rodrigues, Francisco A.
    [J]. CHAOS SOLITONS & FRACTALS, 2021, 153 (153)
  • [36] Predicting hospital disposition for trauma patients: application of data-driven machine learning algorithms
    Alrashidi, Nasser
    Alrashidi, Musaed
    Mejahed, Sara
    Eltahawi, Ahmed A.
    [J]. AIMS MATHEMATICS, 2024, 9 (04): : 7751 - 7769
  • [37] Data-Driven Evidential Reasoning for Interpretable Machine Learning and Its Application in Fraud Detection
    Xu, Dong-Ling
    [J]. 2019 25TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND COMPUTING (ICAC), 2019, : 620 - 620
  • [38] Data-driven monitoring of the gearbox using multifractal analysis and machine learning methods
    Puchalski, Andrzej
    Komorska, Iwona
    [J]. III INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN ENGINEERING SCIENCE (CMES 18), 2019, 252
  • [39] A Machine-Learning Algorithm with Disjunctive Model for Data-Driven Program Analysis
    Jeon, Minseok
    Jeong, Sehun
    Cha, Sungdeok
    Oh, Hakjoo
    [J]. ACM TRANSACTIONS ON PROGRAMMING LANGUAGES AND SYSTEMS, 2019, 41 (02):
  • [40] Data-Driven Prediction of Stability of Rock Tunnel Heading: An Application of Machine Learning Models
    Ngamkhanong, Chayut
    Keawsawasvong, Suraparb
    Jearsiripongkul, Thira
    Cabangon, Lowell Tan
    Payan, Meghdad
    Sangjinda, Kongtawan
    Banyong, Rungkhun
    Thongchom, Chanachai
    [J]. INFRASTRUCTURES, 2022, 7 (11)