ANALYSIS OF PIEZOELECTRIC SEMICONDUCTORS VIA DATA-DRIVEN MACHINE-LEARNING TECHNIQUES

被引:0
|
作者
Guo, Yu-ting [1 ]
Li, De-zhi [1 ]
Zhang, Chun-li [1 ]
机构
[1] Zhejiang Univ, Dept Engn Mech, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Piezoelectric semiconductor; PS rod; Multi-field coupling; Machine learning; PINNs;
D O I
10.1109/SPAWDA51471.2021.9445417
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Piezoelectric semiconductors (PSs) have great potential applications in future multifunctional devices. The interaction among deformation, polarization, and carrier in PSs under an external load leads to a variety of innovative electronic, mechanical, and optical behaviors. Studying multi-field coupling mechanical behaviors of PSs plays a fundamental role in PS devices. However, the partial differential equations (PDEs) describing PSs are nonlinear. This brings rather a mathematical challenge to analysis of PSs. In this work, we propose a machine-learning-based approach to solving multi-field coupling problems of piezoelectric semiconductors. Based on the linear analytical solution, the physics-informed neural networks (PINNs) is trained to obtain the data-driven solutions for a static axial extensional PS rod.
引用
收藏
页码:258 / 262
页数:5
相关论文
共 50 条
  • [1] Machine-Learning Techniques Assist Data-Driven Well-Performance Optimization
    Carpenter, Chris
    [J]. JPT, Journal of Petroleum Technology, 2021, 73 (10): : 63 - 64
  • [2] A Machine-Learning Algorithm with Disjunctive Model for Data-Driven Program Analysis
    Jeon, Minseok
    Jeong, Sehun
    Cha, Sungdeok
    Oh, Hakjoo
    [J]. ACM TRANSACTIONS ON PROGRAMMING LANGUAGES AND SYSTEMS, 2019, 41 (02):
  • [3] Data-Driven Machine-Learning Methods for Diabetes Risk Prediction
    Dritsas, Elias
    Trigka, Maria
    [J]. SENSORS, 2022, 22 (14)
  • [4] Personalized Tourist Recommender System: A Data-Driven and Machine-Learning Approach
    Shrestha, Deepanjal
    Tan, Wenan
    Shrestha, Deepmala
    Rajkarnikar, Neesha
    Jeong, Seung-Ryul
    [J]. COMPUTATION, 2024, 12 (03)
  • [5] Data-driven machine-learning analysis of potential embolic sources in embolic stroke of undetermined source
    Ntaios, G.
    Weng, S. F.
    Perlepe, K.
    Akyea, R.
    Condon, L.
    Lambrou, D.
    Sirimarco, G.
    Strambo, D.
    Eskandari, A.
    Karagkiozi, E.
    Vemmou, A.
    Korompoki, E.
    Manios, E.
    Makaritsis, K.
    Vemmos, K.
    Michel, P.
    [J]. EUROPEAN JOURNAL OF NEUROLOGY, 2021, 28 (01) : 192 - 201
  • [6] DATA-DRIVEN PREDICTION OF CELLULAR NETWORKS COVERAGE: AN INTERPRETABLE MACHINE-LEARNING MODEL
    Ghasemi, Amir
    [J]. 2018 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2018), 2018, : 604 - 608
  • [7] Modeling and prediction of slug characteristics utilizing data-driven machine-learning methodology
    Kim, Tea-Woo
    Kim, Sungil
    Lim, Jung-Tek
    [J]. JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2020, 195
  • [8] Robust data-driven machine-learning models for subsurface applications are we there yet?
    Mishra, Srikanta
    Schuetter, Jared
    Datta-Gupta, Akhil
    Bromhal, Grant
    [J]. JPT, Journal of Petroleum Technology, 2021, 73 (03): : 25 - 30
  • [9] Towards the behavior analysis of chemical reactors utilizing data-driven trend analysis and machine learning techniques
    Lithoxoidou, E.
    Ziogou, C.
    Vafeiadis, T.
    Krinidis, S.
    Ioannidis, D.
    Voutetakis, S.
    Tzovaras, D.
    [J]. APPLIED SOFT COMPUTING, 2020, 94
  • [10] Machine-learning techniques for macromolecular crystallization data
    Gopalakrishnan, V
    Livingston, G
    Hennessy, D
    Buchanan, B
    Rosenberg, JM
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2004, 60 : 1705 - 1716