Machine-Learning Techniques Assist Data-Driven Well-Performance Optimization

被引:0
|
作者
Carpenter, Chris
机构
来源
JPT, Journal of Petroleum Technology | 2021年 / 73卷 / 10期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:63 / 64
相关论文
共 50 条
  • [1] ANALYSIS OF PIEZOELECTRIC SEMICONDUCTORS VIA DATA-DRIVEN MACHINE-LEARNING TECHNIQUES
    Guo, Yu-ting
    Li, De-zhi
    Zhang, Chun-li
    PROCEEDINGS OF THE 2020 15TH SYMPOSIUM ON PIEZOELECTRCITY, ACOUSTIC WAVES AND DEVICE APPLICATIONS (SPAWDA), 2021, : 258 - 262
  • [2] Data-Driven Machine-Learning Methods for Diabetes Risk Prediction
    Dritsas, Elias
    Trigka, Maria
    SENSORS, 2022, 22 (14)
  • [3] Adapting Data-Driven Techniques to Improve Surrogate Machine Learning Model Performance
    Jones, Huw Rhys
    Popescu, Andrei C.
    Sulehman, Yusuf
    Mu, Tingting
    IEEE ACCESS, 2023, 11 : 23909 - 23925
  • [4] Seismic performance assessment of corroded RC columns based on data-driven machine-learning approach
    Xu, Ji-Gang
    Hong, Wan
    Zhang, Jian
    Hou, Shi-Tong
    Wu, Gang
    ENGINEERING STRUCTURES, 2022, 255
  • [5] Personalized Tourist Recommender System: A Data-Driven and Machine-Learning Approach
    Shrestha, Deepanjal
    Tan, Wenan
    Shrestha, Deepmala
    Rajkarnikar, Neesha
    Jeong, Seung-Ryul
    COMPUTATION, 2024, 12 (03)
  • [6] A Machine-Learning Algorithm with Disjunctive Model for Data-Driven Program Analysis
    Jeon, Minseok
    Jeong, Sehun
    Cha, Sungdeok
    Oh, Hakjoo
    ACM TRANSACTIONS ON PROGRAMMING LANGUAGES AND SYSTEMS, 2019, 41 (02):
  • [7] A Data-Driven Comparative Analysis of Machine-Learning Models for Familial Hypercholesterolemia Detection
    Kocejko, Tomasz
    Applied Sciences (Switzerland), 2024, 14 (23):
  • [8] DATA-DRIVEN PREDICTION OF CELLULAR NETWORKS COVERAGE: AN INTERPRETABLE MACHINE-LEARNING MODEL
    Ghasemi, Amir
    2018 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2018), 2018, : 604 - 608
  • [9] Modeling and prediction of slug characteristics utilizing data-driven machine-learning methodology
    Kim, Tea-Woo
    Kim, Sungil
    Lim, Jung-Tek
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2020, 195
  • [10] Robust data-driven machine-learning models for subsurface applications are we there yet?
    Mishra, Srikanta
    Schuetter, Jared
    Datta-Gupta, Akhil
    Bromhal, Grant
    JPT, Journal of Petroleum Technology, 2021, 73 (03): : 25 - 30