The rise of data-driven microscopy powered by machine learning

被引:2
|
作者
Morgado, Leonor [1 ,2 ]
Gomez-de-Mariscal, Estibaliz [1 ]
Heil, Hannah S. [1 ]
Henriques, Ricardo [1 ,3 ]
机构
[1] Inst Gulbenkian Ciencias, Opt Cell Biol, Oeiras, Portugal
[2] Abbelight, Cachan, France
[3] UCL Univ Coll London, Lab Mol Cell Biol, London, England
基金
欧洲研究理事会;
关键词
data-driven; image analysis; machine learning; reactive microscopy;
D O I
10.1111/jmi.13282
中图分类号
TH742 [显微镜];
学科分类号
摘要
Optical microscopy is an indispensable tool in life sciences research, but conventional techniques require compromises between imaging parameters like speed, resolution, field of view and phototoxicity. To overcome these limitations, data-driven microscopes incorporate feedback loops between data acquisition and analysis. This review overviews how machine learning enables automated image analysis to optimise microscopy in real time. We first introduce key data-driven microscopy concepts and machine learning methods relevant to microscopy image analysis. Subsequently, we highlight pioneering works and recent advances in integrating machine learning into microscopy acquisition workflows, including optimising illumination, switching modalities and acquisition rates, and triggering targeted experiments. We then discuss the remaining challenges and future outlook. Overall, intelligent microscopes that can sense, analyse and adapt promise to transform optical imaging by opening new experimental possibilities.
引用
收藏
页码:85 / 92
页数:8
相关论文
共 50 条
  • [1] Machine Learning for Data-Driven Discovery The Rise and Relevance
    Sengupta, Partho P.
    Shrestha, Sirish
    [J]. JACC-CARDIOVASCULAR IMAGING, 2019, 12 (04) : 690 - 692
  • [2] The rise of data-driven modelling
    不详
    [J]. NATURE REVIEWS PHYSICS, 2021, 3 (06) : 383 - 383
  • [3] The Rise of Data-Driven Governance
    Chandler, David
    [J]. CURRENT HISTORY, 2020, 119 (813): : 3 - 8
  • [4] The rise of data-driven modelling
    [J]. Nature Reviews Physics, 2021, 3 : 383 - 383
  • [5] Machine Learning Descriptors for Data-Driven Catalysis Study
    Mou, Li-Hui
    Han, TianTian
    Smith, Pieter E. S.
    Sharman, Edward
    Jiang, Jun
    [J]. ADVANCED SCIENCE, 2023, 10 (22)
  • [6] Chinese diabetes datasets for data-driven machine learning
    Qinpei Zhao
    Jinhao Zhu
    Xuan Shen
    Chuwen Lin
    Yinjia Zhang
    Yuxiang Liang
    Baige Cao
    Jiangfeng Li
    Xiang Liu
    Weixiong Rao
    Congrong Wang
    [J]. Scientific Data, 10
  • [7] Unsupervised machine learning for data-driven representations of reactions
    Sirumalla, Sai Krishna
    West, Richard
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [8] Anomaly analytics in data-driven machine learning applications
    Azimi, Shelernaz
    Pahl, Claus
    [J]. INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2024,
  • [9] Data-driven models in machine learning for crime prediction
    Wawrzyniak, Zbigniew M.
    Jankowski, Stanislaw
    Szczechla, Eliza
    Szymanski, Zbigniew
    Pytlak, Radoslaw
    Michalak, Pawel
    Borowik, Grzegorz
    [J]. 2018 26TH INTERNATIONAL CONFERENCE ON SYSTEMS ENGINEERING (ICSENG 2018), 2018,
  • [10] Chinese diabetes datasets for data-driven machine learning
    Zhao, Qinpei
    Zhu, Jinhao
    Shen, Xuan
    Lin, Chuwen
    Zhang, Yinjia
    Liang, Yuxiang
    Cao, Baige
    Li, Jiangfeng
    Liu, Xiang
    Rao, Weixiong
    Wang, Congrong
    [J]. SCIENTIFIC DATA, 2023, 10 (01)