Machine learning approaches to predict drug efficacy and toxicity in oncology

被引:20
|
作者
Badwan, Bara A. [1 ]
Liaropoulos, Gerry [1 ]
Kyrodimos, Efthymios [2 ]
Skaltsas, Dimitrios [1 ]
Tsirigos, Aristotelis [3 ,4 ]
Gorgoulis, Vassilis G. [1 ,5 ,6 ,7 ,8 ]
机构
[1] Intelligencia Inc, New York, NY 10014 USA
[2] Natl Kapodistrian Univ Athens, Hippocrat Hosp, ENT Dept 1, GR-11527 Athens, Greece
[3] NYU, Sch Med, Dept Med, New York, NY 10016 USA
[4] NYU, Sch Med, Dept Pathol, New York, NY 10016 USA
[5] Natl Kapodistrian Univ Athens, Fac Med, Sch Hlth Sci, Dept Histol & Embryol, Athens 11527, Greece
[6] Univ Dundee, Ninewells Hosp & Med Sch, Dundee DD1 9SY, Scotland
[7] Acad Athens, Biomed Res Fdn, Athens 11527, Greece
[8] Univ Manchester, Manchester Canc Res Ctr, Manchester Acad Hlth Sci Ctr, Mol & Clin Canc Sci, Manchester M20 4GJ, England
来源
CELL REPORTS METHODS | 2023年 / 3卷 / 02期
关键词
NETWORKS;
D O I
10.1016/j.crmeth.2023.100413
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
In recent years, there has been a surge of interest in using machine learning algorithms (MLAs) in oncology, particularly for biomedical applications such as drug discovery, drug repurposing, diagnostics, clinical trial design, and pharmaceutical production. MLAs have the potential to provide valuable insights and predictions in these areas by representing both the disease state and the therapeutic agents used to treat it. To fully utilize the capabilities of MLAs in oncology, it is important to understand the fundamental concepts underlying these algorithms and how they can be applied to assess the efficacy and toxicity of therapeutics. In this perspective, we lay out approaches to represent both the disease state and the therapeutic agents used by MLAs to derive novel insights and make relevant predictions.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Epigenomic Techniques and Machine Learning Approaches to Predict Pregnancy Complications
    Wilson, S. L.
    BIRTH DEFECTS RESEARCH, 2023, 115 (08): : 838 - 838
  • [22] Machine Learning Approaches to Predict Asthma Exacerbations: A Narrative Review
    Molfino, Nestor A.
    Turcatel, Gianluca
    Riskin, Daniel
    ADVANCES IN THERAPY, 2024, 41 (02) : 534 - 552
  • [23] Machine Learning Approaches to Predict Breast Cancer: Bangladesh Perspective
    Islam, Taminul
    Kundu, Arindom
    Khan, Nazmul Islam
    Bonik, Choyon Chandra
    Akter, Flora
    Islam, Md Jihadul
    UBIQUITOUS INTELLIGENT SYSTEMS, 2022, 302 : 291 - 305
  • [24] Using a Novel Machine Learning Technique to Predict Radiation Oncology Outcomes
    Muhlestein, W.
    Chambless, L. B.
    Pajewski, N. M.
    Braunstein, S. E.
    Hepel, J. T.
    Chung, C.
    Contessa, J. N.
    Chao, S. T.
    Fiveash, J. B.
    Attia, A.
    Chan, M. D.
    Ayala-Peacock, D. N.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2017, 99 (02): : E422 - E423
  • [25] Use of machine learning approaches for novel drug discovery
    Lima, Angelica Nakagawa
    Philot, Eric Allison
    Goulart Trossini, Gustavo Henrique
    Barbour Scott, Luis Paulo
    Maltarollo, Vinicius Goncalves
    Honorio, Kathia Maria
    EXPERT OPINION ON DRUG DISCOVERY, 2016, 11 (03) : 225 - 239
  • [26] A review on machine learning approaches and trends in drug discovery
    Carracedo-Reboredo, Paula
    Linares-Blanco, Jose
    Rodriguez-Fernandez, Nereida
    Cedron, Francisco
    Novoa, Francisco J.
    Carballal, Adrian
    Maojo, Victor
    Pazos, Alejandro
    Fernandez-Lozano, Carlos
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 4538 - 4558
  • [27] Machine and deep learning approaches for cancer drug repurposing
    Issa, Naiem T.
    Stathias, Vasileios
    Schurer, Stephan
    Dakshanamurthy, Sivanesan
    SEMINARS IN CANCER BIOLOGY, 2021, 68 : 132 - 142
  • [28] Systematic approaches to machine learning models for predicting pesticide toxicity
    Anandhi, Ganesan
    Iyapparaja, M.
    HELIYON, 2024, 10 (07)
  • [29] Machine learning approaches and their applications in drug discovery and design
    Priya, Sonal
    Tripathi, Garima
    Singh, Dev Bukhsh
    Jain, Priyanka
    Kumar, Abhijeet
    CHEMICAL BIOLOGY & DRUG DESIGN, 2022, 100 (01) : 136 - 153
  • [30] Machine Learning Approaches to Predict Learning Outcomes in Massive Open Online Courses
    AL-Shabandar, Raghad
    Hussain, Abir
    Laws, Andy
    Keight, Robert
    Lunn, Janet
    Radi, Naeem
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 713 - 720