Using a Novel Machine Learning Technique to Predict Radiation Oncology Outcomes

被引:0
|
作者
Muhlestein, W. [1 ]
Chambless, L. B. [2 ]
Pajewski, N. M. [3 ]
Braunstein, S. E. [4 ]
Hepel, J. T. [5 ]
Chung, C. [6 ]
Contessa, J. N. [7 ]
Chao, S. T. [8 ]
Fiveash, J. B. [9 ]
Attia, A. [10 ]
Chan, M. D. [11 ]
Ayala-Peacock, D. N. [12 ]
机构
[1] Vanderbilt Univ, Med Ctr, Nashville, TN USA
[2] Vanderbilt Univ, Med Ctr, Dept Neurosurg, Nashville, TN USA
[3] Wake Forest Baptist Med Ctr, Winston Salem, NC USA
[4] Univ Calif San Francisco, San Francisco, CA 94143 USA
[5] Brown Univ, Rhode Isl Hosp, Radiat Oncol, Alpert Med Sch, Providence, RI 02903 USA
[6] Princess Margaret Hosp, Toronto, ON, Canada
[7] Yale Univ, Sch Med, Dept Therapeut Radiol, New Haven, CT 06510 USA
[8] Cleveland Clin, Dept Radiat Oncol, Taussig Canc Inst, Cleveland, OH 44106 USA
[9] Univ Alabama Birmingham, Birmingham, AL USA
[10] Vanderbilt Univ, Med Ctr, Dept Radiat Oncol, Nashville, TN USA
[11] Wake Forest Univ, Bowman Gray Sch Med, Winston Salem, NC USA
[12] Wake Forest Univ, Med Ctr, Winston Salem, NC USA
关键词
D O I
10.1016/j.ijrobp.2017.06.1614
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
3003
引用
收藏
页码:E422 / E423
页数:2
相关论文
共 50 条
  • [1] Using machine learning to predict outcomes in psychosis\
    Young, Jonathan
    Kempton, Matthew J.
    McGuire, Philip
    [J]. LANCET PSYCHIATRY, 2016, 3 (10): : 908 - 909
  • [2] USING MACHINE LEARNING TO PREDICT OUTCOMES IN PSYCHOSIS
    Koutsouleris, Nikolaos
    Falkai, Peter
    [J]. SCHIZOPHRENIA BULLETIN, 2017, 43 : S88 - S88
  • [3] Augmenting machine learning algorithms to predict mortality using patient-reported outcomes in oncology.
    Parikh, Ravi Bharat
    Schnall, Jill
    Liu, Manqing
    Gabriel, Peter Edward
    Chivers, Corey
    Draugelis, Michael
    Ferrell, Will
    Lerman, Caryn
    Bekelman, Justin E.
    Chen, Jinbo
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2021, 39 (15)
  • [4] Using machine learning to predict physics course outcomes
    Zabriskie, Cabot
    Yang, Jie
    DeVore, Seth
    Stewart, John
    [J]. PHYSICAL REVIEW PHYSICS EDUCATION RESEARCH, 2019, 15 (02):
  • [5] Predicting waiting times in Radiation Oncology using machine learning
    Joseph, A.
    Hijal, T.
    Kildea, J.
    Hendren, L.
    Herrera, D.
    [J]. 2017 16TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2017, : 1024 - 1029
  • [6] Predicting waiting times in Radiation Oncology using machine learning
    Joseph, Ackeem
    Herrera, David
    Hijal, Tarek
    Hendren, Laurie
    Leung, Alvin
    Wainberg, Justin
    Sawaf, Marya
    Maxim, Gorshkov
    Maglieri, Robert
    Keshavarz, Mehryar
    Kildea, John
    [J]. MEDICAL PHYSICS, 2016, 43 (08) : 4953 - 4953
  • [7] Predicting Waiting Times in Radiation Oncology Using Machine Learning
    Joseph, A.
    Herrera, D.
    Hijal, T.
    Hendren, L.
    Leung, A.
    Wainberg, J.
    Sawaf, M.
    Gorshkov, M.
    Maglieri, R.
    Keshavarz, M.
    Kildea, J.
    [J]. MEDICAL PHYSICS, 2016, 43 (06) : 3362 - 3362
  • [8] Machine learning applications in radiation oncology
    Field, Matthew
    Hardcastle, Nicholas
    Jameson, Michael
    Aherne, Noel
    Holloway, Lois
    [J]. PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2021, 19 : 13 - 24
  • [9] Editorial: Machine learning in radiation oncology
    Zhao, Wei
    Zhang, Ye
    Wu, Jia
    Li, Xiaomeng
    Jiang, Yuming
    [J]. FRONTIERS IN ONCOLOGY, 2022, 12
  • [10] Using machine learning to predict outcomes following suprainguinal bypass
    Li, Ben
    Eisenberg, Naomi
    Beaton, Derek
    Lee, Douglas S.
    Aljabri, Badr
    Wijeysundera, Duminda N.
    Rotstein, Ori D.
    de Mestral, Charles
    Mamdani, Muhammad
    Roche-Nagle, Graham
    Al-Omran, Mohammed
    [J]. JOURNAL OF VASCULAR SURGERY, 2024, 79 (03) : 593 - 608.e8