Machine learning approaches to predict drug efficacy and toxicity in oncology

被引:20
|
作者
Badwan, Bara A. [1 ]
Liaropoulos, Gerry [1 ]
Kyrodimos, Efthymios [2 ]
Skaltsas, Dimitrios [1 ]
Tsirigos, Aristotelis [3 ,4 ]
Gorgoulis, Vassilis G. [1 ,5 ,6 ,7 ,8 ]
机构
[1] Intelligencia Inc, New York, NY 10014 USA
[2] Natl Kapodistrian Univ Athens, Hippocrat Hosp, ENT Dept 1, GR-11527 Athens, Greece
[3] NYU, Sch Med, Dept Med, New York, NY 10016 USA
[4] NYU, Sch Med, Dept Pathol, New York, NY 10016 USA
[5] Natl Kapodistrian Univ Athens, Fac Med, Sch Hlth Sci, Dept Histol & Embryol, Athens 11527, Greece
[6] Univ Dundee, Ninewells Hosp & Med Sch, Dundee DD1 9SY, Scotland
[7] Acad Athens, Biomed Res Fdn, Athens 11527, Greece
[8] Univ Manchester, Manchester Canc Res Ctr, Manchester Acad Hlth Sci Ctr, Mol & Clin Canc Sci, Manchester M20 4GJ, England
来源
CELL REPORTS METHODS | 2023年 / 3卷 / 02期
关键词
NETWORKS;
D O I
10.1016/j.crmeth.2023.100413
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
In recent years, there has been a surge of interest in using machine learning algorithms (MLAs) in oncology, particularly for biomedical applications such as drug discovery, drug repurposing, diagnostics, clinical trial design, and pharmaceutical production. MLAs have the potential to provide valuable insights and predictions in these areas by representing both the disease state and the therapeutic agents used to treat it. To fully utilize the capabilities of MLAs in oncology, it is important to understand the fundamental concepts underlying these algorithms and how they can be applied to assess the efficacy and toxicity of therapeutics. In this perspective, we lay out approaches to represent both the disease state and the therapeutic agents used by MLAs to derive novel insights and make relevant predictions.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] Novel Machine Learning Approaches Tailored to Protein Configuration Predict Drug Vulnerabilities in Myeloid Neoplasia
    Durmaz, Arda
    Bravo-Perez, Carlos
    Brady, Zachary
    D'Addona, Matteo
    Guarnera, Luca
    Unlu, Serhan
    Awada, Hussein
    Thiagarajan, Praveena
    Fedorov, Yuriy
    Adams, Drew
    Gurnari, Carmelo
    Scott, Jacob G.
    Maciejewski, Jaroslaw
    Visconte, Valeria
    BLOOD, 2024, 144 : 4980 - 4981
  • [12] Comparative analysis of the capability of the extended biotic ligand model and machine learning approaches to predict arsenate toxicity
    Park J.
    Yang J.H.
    Jung J.
    Kwak I.-S.
    Choe J.K.
    An J.
    Chemosphere, 2023, 344
  • [13] Utilizing machine learning to predict coagulopathy in acetaminophen toxicity
    Matsler, Nikolaus
    Kaiser, Sasha
    Cook, Stephen
    Nguyen, HoanVu
    Hoyte, Christopher
    CLINICAL TOXICOLOGY, 2022, 60 : 141 - 141
  • [14] Machine learning approaches for drug combination therapies
    Paltun, Betul Guvenc
    Kaski, Samuel
    Mamitsuka, Hiroshi
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
  • [15] Toxicity prediction of nanoparticles using machine learning approaches
    Ahmadi, Mahnaz
    Ayyoubzadeh, Seyed Mohammad
    Ghorbani-Bidkorpeh, Fatemeh
    TOXICOLOGY, 2024, 501
  • [16] TB-ML-a framework for comparing machine learning approaches to predict drug resistance of Mycobacterium tuberculosis
    Libiseller-Egger, Julian
    Wang, Linfeng
    Deelder, Wouter
    Campino, Susana
    Clark, Taane G.
    Phelan, Jody E.
    BIOINFORMATICS ADVANCES, 2023, 3 (01):
  • [17] Machine learning to predict the efficacy of ustekinumab for ulcerative colitis
    Morikubo, H.
    Tojima, R.
    Maeda, T.
    Matsuoka, K.
    Matsuura, M.
    Miyoshi, J.
    Tamura, S.
    Hisamatsu, T.
    JOURNAL OF CROHNS & COLITIS, 2024, 18 : I1940 - I1941
  • [18] Machine learning models predict selinexor tolerability and efficacy
    Artstein, Y.
    Walker, C.
    Yang, F.
    Van Domelen, D.
    Borochov, D.
    Mercier, I.
    Shah, J.
    Shacham, S.
    Landesman, Y.
    Tang, S.
    Shacham, E.
    ANNALS OF ONCOLOGY, 2020, 31 : S277 - S277
  • [19] Applications of Machine Learning Methods in Drug Toxicity Prediction
    Zhang, Li
    Zhang, Hui
    Ai, Haixin
    Hu, Huan
    Li, Shimeng
    Zhao, Jian
    Liu, Hongsheng
    CURRENT TOPICS IN MEDICINAL CHEMISTRY, 2018, 18 (12) : 987 - 997
  • [20] Machine Learning Approaches to Predict New Mobile Internet Customers
    Sawan, Aktham
    Jayousi, Rashid
    2020 IEEE 14TH INTERNATIONAL CONFERENCE ON APPLICATION OF INFORMATION AND COMMUNICATION TECHNOLOGIES (AICT2020), 2020,