Non-Nehari manifold method for asymptotically periodic Schrdinger equations

被引:2
|
作者
TANG XianHua [1 ]
机构
[1] School of Mathematics and Statistics, Central South University
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
Schrdinger equation; non-Nehari manifold method; asymptotically periodic; ground state solutions of Nehari-Pankov type;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
We consider the semilinear Schrdinger equation-△u + V(x)u = f(x, u), x ∈ RN,u ∈ H 1(RN),where f is a superlinear, subcritical nonlinearity. We mainly study the case where V(x) = V0(x) + V1(x),V0∈ C(RN), V0(x) is 1-periodic in each of x1, x2,..., x N and sup[σ(-△ + V0) ∩(-∞, 0)] < 0 < inf[σ(-△ +V0)∩(0, ∞)], V1∈ C(RN) and lim|x|→∞V1(x) = 0. Inspired by previous work of Li et al.(2006), Pankov(2005)and Szulkin and Weth(2009), we develop a more direct approach to generalize the main result of Szulkin and Weth(2009) by removing the "strictly increasing" condition in the Nehari type assumption on f(x, t)/|t|. Unlike the Nahari manifold method, the main idea of our approach lies on finding a minimizing Cerami sequence for the energy functional outside the Nehari-Pankov manifold N0 by using the diagonal method.
引用
收藏
页码:715 / 728
页数:14
相关论文
共 50 条
  • [21] Nehari manifold and fibering map approach for fractional p(.)-Laplacian Schrödinger system
    El-Houari H.
    Chadli L.S.
    Hicham M.
    SeMA Journal, 2024, 81 (4) : 729 - 751
  • [22] Existence of Ground State Solutions for Generalized Quasilinear Schrödinger Equations with Asymptotically Periodic Potential
    Yan-Fang Xue
    Li-Ju Yu
    Jian-Xin Han
    Qualitative Theory of Dynamical Systems, 2022, 21
  • [23] Method of Variations of Potential of Quasi-Periodic Schrödinger Equations
    Jackson Chan
    Geometric and Functional Analysis, 2008, 17 : 1416 - 1478
  • [24] On superlinear Schrödinger equations with periodic potential
    Shibo Liu
    Calculus of Variations and Partial Differential Equations, 2012, 45 : 1 - 9
  • [25] Non-Nehari Manifold Method for Hamiltonian Elliptic System with Hardy Potential: Existence and Asymptotic Properties of Ground State Solution
    Chen, Peng
    Tang, Xianhua
    Zhang, Limin
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (02)
  • [26] Non-Nehari Manifold Method for Hamiltonian Elliptic System with Hardy Potential: Existence and Asymptotic Properties of Ground State Solution
    Peng Chen
    Xianhua Tang
    Limin Zhang
    The Journal of Geometric Analysis, 2022, 32
  • [27] Quasilinear asymptotically periodic Schrödinger–Poisson system with subcritical growth
    Jing Zhang
    Lifeng Guo
    Miaomiao Yang
    Boundary Value Problems, 2020
  • [28] Normalized Solutions for Nonautonomous Schrödinger Equations on a Suitable Manifold
    Sitong Chen
    Xianhua Tang
    The Journal of Geometric Analysis, 2020, 30 : 1637 - 1660
  • [29] Non-periodic discrete Schrödinger equations: ground state solutions
    Guanwei Chen
    Martin Schechter
    Zeitschrift für angewandte Mathematik und Physik, 2016, 67
  • [30] Center Manifold for Nonintegrable Nonlinear Schrödinger Equations on the Line
    Ricardo Weder
    Communications in Mathematical Physics, 2000, 215 : 343 - 356