Discontinuous Galerkin Finite Element Method for a Nonlinear Boundary Value Problem

被引:0
|
作者
Tie ZHANG [1 ]
Jian-Bao LI [1 ]
机构
[1] Department of Mathematics,Northeastern University
基金
中国国家自然科学基金;
关键词
variational inequality; DG method; optimal error estimate; a posteriori error analysis;
D O I
暂无
中图分类号
O241.82 [偏微分方程的数值解法];
学科分类号
070102 ;
摘要
In this paper,we investigate the a priori and a posteriori error estimates for the discontinuous Galerkin finite element approximation to a regularization version of the variational inequality of the second kind.We show the optimal error estimates in the DG-norm(stronger than the H1norm)and the L2norm,respectively.Furthermore,some residual-based a posteriori error estimators are established which provide global upper bounds and local lower bounds on the discretization error.These a posteriori analysis results can be applied to develop the adaptive DG methods.
引用
收藏
页码:521 / 532
页数:12
相关论文
共 50 条
  • [41] A conforming discontinuous Galerkin finite element method for Brinkman equations
    Dang, Haoning
    Zhai, Qilong
    Zhao, Zhongshu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 440
  • [42] A CONFORMING DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD: PART III
    Ye, Xiu
    Zhang, Shangyou
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2020, 17 (06) : 794 - 805
  • [43] A DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD FOR MULTIPHASE VISCOUS FLOW
    Whiteley, J. P.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (04): : B591 - B612
  • [44] The discontinuous Galerkin finite element method for fractional cable equation
    Zheng, Yunying
    Zhao, Zhengang
    APPLIED NUMERICAL MATHEMATICS, 2017, 115 : 32 - 41
  • [45] A CONFORMING DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD: PART II
    Ye, Xiu
    Zhang, Shangyou
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2020, 17 (02) : 281 - 282
  • [46] GALERKIN COLLOCATION FOR AN IMPROVED BOUNDARY ELEMENT METHOD FOR A PLANE MIXED BOUNDARY-VALUE PROBLEM
    LAMP, U
    SCHLEICHER, T
    STEPHAN, E
    WENDLAND, WL
    COMPUTING, 1984, 33 (3-4) : 269 - 296
  • [47] The Discontinuous Galerkin Finite Element Time Domain Method (DGFETD)
    Gedney, S. D.
    Kramer, T.
    Luo, C.
    Roden, J. A.
    Crawford, R.
    Guernsey, B.
    Beggs, John
    Miller, J. A.
    2008 IEEE INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY, VOLS 1-3, 2008, : 768 - +
  • [48] Mixed Discontinuous Galerkin Finite Element Method for the Biharmonic Equation
    Thirupathi Gudi
    Neela Nataraj
    Amiya K. Pani
    Journal of Scientific Computing, 2008, 37 : 139 - 161
  • [49] An implicit discontinuous Galerkin finite element method for watet waves
    van der Vegt, JJW
    Tomar, SK
    COMPUTATIONAL MECHANICS, PROCEEDINGS, 2004, : 690 - 695
  • [50] The Discontinuous Galerkin Finite Element Method for Solving the MEG and the Combined MEG/EEG Forward Problem
    Piastra, Maria Carla
    Nuessing, Andreas
    Vorwerk, Johannes
    Bornfleth, Harald
    Oostenveld, Robert
    Engwer, Christian
    Wolters, Carsten H.
    FRONTIERS IN NEUROSCIENCE, 2018, 12