Discontinuous Galerkin Finite Element Method for a Nonlinear Boundary Value Problem

被引:0
|
作者
Tie ZHANG [1 ]
Jian-Bao LI [1 ]
机构
[1] Department of Mathematics,Northeastern University
基金
中国国家自然科学基金;
关键词
variational inequality; DG method; optimal error estimate; a posteriori error analysis;
D O I
暂无
中图分类号
O241.82 [偏微分方程的数值解法];
学科分类号
070102 ;
摘要
In this paper,we investigate the a priori and a posteriori error estimates for the discontinuous Galerkin finite element approximation to a regularization version of the variational inequality of the second kind.We show the optimal error estimates in the DG-norm(stronger than the H1norm)and the L2norm,respectively.Furthermore,some residual-based a posteriori error estimators are established which provide global upper bounds and local lower bounds on the discretization error.These a posteriori analysis results can be applied to develop the adaptive DG methods.
引用
收藏
页码:521 / 532
页数:12
相关论文
共 50 条
  • [31] The direct coupling of local discontinuous Galerkin and natural boundary element method for nonlinear interface problem in R3
    Huang, Hongying
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 262 : 232 - 248
  • [32] Hybrid mixed discontinuous Galerkin finite element method for incompressible miscible displacement problem
    Zhang, Jiansong
    Yu, Yun
    Zhu, Jiang
    Jiang, Maosheng
    APPLIED NUMERICAL MATHEMATICS, 2024, 198 : 122 - 137
  • [33] Discontinuous Galerkin Methods for Semilinear Elliptic Boundary Value Problem
    Zhan, Jiajun
    Zhong, Liuqiang
    Peng, Jie
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2023, 15 (02) : 450 - 467
  • [34] Discontinuous Galerkin Methods for Semilinear Elliptic Boundary Value Problem
    Zhan, Jiajun
    Zhong, Liuqiang
    Peng, Jie
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2022,
  • [35] The finite element method for a boundary value problem with strong singularity
    Rukavishnikov, V. A.
    Rukavishnikova, H. I.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (09) : 2870 - 2882
  • [36] Solving Boundary Value Problem Using Finite Element Method
    Buttar, Tahira Nasreen
    Sajid, Naila
    4TH INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES (ICMS4): MATHEMATICAL SCIENCES: CHAMPIONING THE WAY IN A PROBLEM BASED AND DATA DRIVEN SOCIETY, 2017, 1830
  • [37] Boundary conforming discontinuous Galerkin finite element approach for rotorcraft simulations
    Boelens, OJ
    van der Ven, H
    Oskam, B
    Hassan, AA
    JOURNAL OF AIRCRAFT, 2002, 39 (05): : 776 - 785
  • [38] Discontinuous Galerkin finite element approximation of quasilinear elliptic boundary value problems I:: the scalar case
    Houston, P
    Robson, J
    Süli, E
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2005, 25 (04) : 726 - 749
  • [39] Time discontinuous Galerkin space-time finite element method for nonlinear Sobolev equations
    He, Siriguleng
    Li, Hong
    Liu, Yang
    FRONTIERS OF MATHEMATICS IN CHINA, 2013, 8 (04) : 825 - 836
  • [40] Time discontinuous Galerkin space-time finite element method for nonlinear Sobolev equations
    Siriguleng He
    Hong Li
    Yang Liu
    Frontiers of Mathematics in China, 2013, 8 : 825 - 836