An implicit discontinuous Galerkin finite element method for watet waves

被引:0
|
作者
van der Vegt, JJW [1 ]
Tomar, SK [1 ]
机构
[1] Univ Twente, Dept Math Appl, NL-7500 AE Enschede, Netherlands
关键词
discontinuous Galerkin method; water waves; elliptic partial differential equations;
D O I
暂无
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
An over-view is given of a discontinuous Galerkin finite element method for linear free surface water waves. The method uses an implicit time integration method which is unconditionally stable and does not suffer from the frequently encountered mesh dependent saw-tooth type instability at the free surface. The numerical discretization has minimal dissipation and small dispersion errors in the wave propagation. The algorithm is second order accurate in time and has an optimal rate of convergence O(h(p+1)) in the L-2-norm, both in the potential and wave height, with p the polynomial order and h the mesh size. The numerical discretization is demonstrated with the simulation of water waves in a basin with a bump at the bottom.
引用
收藏
页码:690 / 695
页数:6
相关论文
共 50 条
  • [1] A CONFORMING DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD
    Ye, Xiu
    Zhang, Shangyou
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2020, 17 (01) : 110 - 117
  • [2] An implicit discontinuous Galerkin finite element discrete Boltzmann method for high Knudsen number flows
    Ganeshan, Karthik
    Williams, David M.
    [J]. PHYSICS OF FLUIDS, 2021, 33 (03)
  • [3] Discontinuous Galerkin finite element method for parabolic problems
    Kaneko, Hideaki
    Bey, Kim S.
    Hou, Gene J. W.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2006, 182 (01) : 388 - 402
  • [4] An unfitted finite element method using discontinuous Galerkin
    Bastian, Peter
    Engwer, Christian
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 79 (12) : 1557 - 1576
  • [5] Discontinuous Galerkin finite element method for the wave equation
    Grote, Marcus J.
    Schneebeli, Anna
    Schoetzau, Dominik
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (06) : 2408 - 2431
  • [6] A semi-implicit discontinuous Galerkin finite element method for the numerical solution of inviscid compressible flow
    Dolejsí, V
    Feistauer, M
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 198 (02) : 727 - 746
  • [7] Implicit Overrelaxation LU-SGS Discontinuous Galerkin Finite Element Algorithm
    Duan, Zhi-Jian
    Xie, Gong-Nan
    Zhang, Ying-Chun
    [J]. Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2019, 42 (05): : 8 - 14
  • [8] A conforming discontinuous Galerkin finite element method for Brinkman equations
    Dang, Haoning
    Zhai, Qilong
    Zhao, Zhongshu
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 440
  • [9] The Discontinuous Galerkin Finite Element Time Domain Method (DGFETD)
    Gedney, S. D.
    Kramer, T.
    Luo, C.
    Roden, J. A.
    Crawford, R.
    Guernsey, B.
    Beggs, John
    Miller, J. A.
    [J]. 2008 IEEE INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY, VOLS 1-3, 2008, : 768 - +
  • [10] Mixed Discontinuous Galerkin Finite Element Method for the Biharmonic Equation
    Thirupathi Gudi
    Neela Nataraj
    Amiya K. Pani
    [J]. Journal of Scientific Computing, 2008, 37 : 139 - 161