Discontinuous Galerkin Finite Element Method for a Nonlinear Boundary Value Problem

被引:0
|
作者
Tie ZHANG [1 ]
Jian-Bao LI [1 ]
机构
[1] Department of Mathematics,Northeastern University
基金
中国国家自然科学基金;
关键词
variational inequality; DG method; optimal error estimate; a posteriori error analysis;
D O I
暂无
中图分类号
O241.82 [偏微分方程的数值解法];
学科分类号
070102 ;
摘要
In this paper,we investigate the a priori and a posteriori error estimates for the discontinuous Galerkin finite element approximation to a regularization version of the variational inequality of the second kind.We show the optimal error estimates in the DG-norm(stronger than the H1norm)and the L2norm,respectively.Furthermore,some residual-based a posteriori error estimators are established which provide global upper bounds and local lower bounds on the discretization error.These a posteriori analysis results can be applied to develop the adaptive DG methods.
引用
收藏
页码:521 / 532
页数:12
相关论文
共 50 条