Supercritical branching Brownian motion with catalytic branching at the origin

被引:0
|
作者
Li Wang [1 ]
Guowei Zong [2 ]
机构
[1] School of Sciences, Beijing University of Chemical Technology
[2] School of Public Health, Tianjin Medical University
基金
中国国家自然科学基金;
关键词
catalytic branching; Brownian motion; L log L;
D O I
暂无
中图分类号
O211.6 [随机过程]; O643.3 [催化];
学科分类号
020208 ; 070103 ; 0714 ; 081705 ;
摘要
We consider a catalytic branching Brownian motion with general branching which takes place only when particles are at the origin at a rate β>0 on the local time scale. We first establish a spine decomposition for the case wherein the particles have a positive probability of having no children. Then using this tool, we obtain results regarding the asymptotic behavior of the number of particles above λt at time t for λ>0. Under an L log L condition, we prove a strong law of large numbers for this catalytic branching Brownian motion.
引用
收藏
页码:595 / 616
页数:22
相关论文
共 50 条
  • [41] Branching Brownian motion conditioned on small maximum
    Chen, Xinxin
    He, Hui
    Mallein, Bastien
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2023, 20 (02): : 905 - 940
  • [42] Maximum of branching Brownian motion in a periodic environment
    Lubetzky, Eyal
    Thornett, Chris
    Zeitouni, Ofer
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2022, 58 (04): : 2065 - 2093
  • [43] The Glassy Phase of Complex Branching Brownian Motion
    Thomas Madaule
    Rémi Rhodes
    Vincent Vargas
    Communications in Mathematical Physics, 2015, 334 : 1157 - 1187
  • [44] Branching Brownian motion conditioned on particle numbers
    La, Kabir Ramo
    Majumdar, Satya N.
    Schehr, Gregory
    CHAOS SOLITONS & FRACTALS, 2015, 74 : 79 - 88
  • [45] Branching Brownian motion with an inhomogeneous breeding potential
    Harris, J. W.
    Harris, S. C.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2009, 45 (03): : 793 - 801
  • [46] Slowdown for Time Inhomogeneous Branching Brownian Motion
    Ming Fang
    Ofer Zeitouni
    Journal of Statistical Physics, 2012, 149 : 1 - 9
  • [47] An ergodic theorem for the frontier of branching Brownian motion
    Arguin, Louis-Pierre
    Bovier, Anton
    Kistler, Nicola
    ELECTRONIC JOURNAL OF PROBABILITY, 2013, 18 : 1 - 25
  • [48] Branching Brownian motion under soft killing
    Oz, Mehmet
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2024, 21 : 491 - 515
  • [49] Survival probabilities for branching Brownian motion with absorption
    Harris, J. W.
    Harris, S. C.
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2007, 12 : 81 - 92
  • [50] Branching Brownian motion with absorption and the all-time minimum of branching Brownian motion with drift (vol 273, pg 2107, 2017)
    Berestycki, Julien
    Brunet, Eric
    Harris, Simon C.
    Milos, Piotr
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (12)