Supercritical branching Brownian motion with catalytic branching at the origin

被引:0
|
作者
Li Wang [1 ]
Guowei Zong [2 ]
机构
[1] School of Sciences, Beijing University of Chemical Technology
[2] School of Public Health, Tianjin Medical University
基金
中国国家自然科学基金;
关键词
catalytic branching; Brownian motion; L log L;
D O I
暂无
中图分类号
O211.6 [随机过程]; O643.3 [催化];
学科分类号
020208 ; 070103 ; 0714 ; 081705 ;
摘要
We consider a catalytic branching Brownian motion with general branching which takes place only when particles are at the origin at a rate β>0 on the local time scale. We first establish a spine decomposition for the case wherein the particles have a positive probability of having no children. Then using this tool, we obtain results regarding the asymptotic behavior of the number of particles above λt at time t for λ>0. Under an L log L condition, we prove a strong law of large numbers for this catalytic branching Brownian motion.
引用
收藏
页码:595 / 616
页数:22
相关论文
共 50 条
  • [21] The extremal process of branching Brownian motion
    Louis-Pierre Arguin
    Anton Bovier
    Nicola Kistler
    Probability Theory and Related Fields, 2013, 157 : 535 - 574
  • [22] THE GENEALOGY OF BRANCHING BROWNIAN MOTION WITH ABSORPTION
    Berestycki, Julien
    Berestycki, Nathanael
    Schweinsberg, Jason
    ANNALS OF PROBABILITY, 2013, 41 (02): : 527 - 618
  • [23] The extremal process of branching Brownian motion
    Arguin, Louis-Pierre
    Bovier, Anton
    Kistler, Nicola
    PROBABILITY THEORY AND RELATED FIELDS, 2013, 157 (3-4) : 535 - 574
  • [24] Critical branching Brownian motion with killing
    Lalley, Steven P.
    Zheng, Bowei
    ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20 : 1 - 29
  • [25] Catalytic branching random walks in ℤ d with branching at the origin
    Topchiĭ V.A.
    Vatutin V.A.
    Siberian Advances in Mathematics, 2013, 23 (2) : 123 - 153
  • [26] Diffusion processes on branching Brownian motion
    Andres, Sebastian
    Hartung, Lisa
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2018, 15 (02): : 1377 - 1400
  • [27] The fixed points of branching Brownian motion
    Xinxin Chen
    Christophe Garban
    Atul Shekhar
    Probability Theory and Related Fields, 2023, 185 : 839 - 884
  • [28] THE MAXIMUM OF BRANCHING BROWNIAN MOTION IN Rd
    Kim, Yujin H.
    Lubetzky, Eyal
    Zeitouni, Ofer
    ANNALS OF APPLIED PROBABILITY, 2023, 33 (02): : 1315 - 1368
  • [29] The unscaled paths of branching Brownian motion
    Harris, Simon C.
    Roberts, Matthew I.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2012, 48 (02): : 579 - 608
  • [30] The fixed points of branching Brownian motion
    Chen, Xinxin
    Garban, Christophe
    Shekhar, Atul
    PROBABILITY THEORY AND RELATED FIELDS, 2023, 185 (3-4) : 839 - 884