Branching Brownian motion conditioned on small maximum

被引:2
|
作者
Chen, Xinxin [1 ]
He, Hui [1 ]
Mallein, Bastien [2 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[2] Univ Sorbonne Paris Nord, LAGA, UMR 7539, F-93430 Villetaneuse, France
关键词
Branching Brownian motion; lower deviation probability; extremal process; point process; ENTROPIC REPULSION; EQUATION; CONVERGENCE; LAW;
D O I
10.30757/ALEA.v20-33
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For a standard binary branching Brownian motion on the real line, it is known that the typical value of the maximal position M-t among all particles alive at time t is m(t) + Theta(1) with m(t) = root 2t - 3/2 root 2 log t. Further, it is proved independently in Aidekon et al. (2013) and Arguin et al. (2013) that the branching Brownian motion shifted by m(t) (or M-t) converges in law to some decorated Poisson point process. The goal of this work is to study the branching Brownian motion conditioned on M-t << m(t). We give a complete description of the limiting extremal process conditioned on {M-t <= root 2 alpha t} with alpha < 1, which reveals a phase transition at alpha = 1 - root 2. We also verify the conjecture of Derrida and Shi (2017b) on the precise asymptotic behaviour of P(M-t <= root 2 alpha t) for alpha < 1.
引用
收藏
页码:905 / 940
页数:36
相关论文
共 50 条
  • [1] THE MAXIMUM OF BRANCHING BROWNIAN MOTION IN Rd
    Kim, Yujin H.
    Lubetzky, Eyal
    Zeitouni, Ofer
    [J]. ANNALS OF APPLIED PROBABILITY, 2023, 33 (02): : 1315 - 1368
  • [2] Branching Brownian motion conditioned on particle numbers
    La, Kabir Ramo
    Majumdar, Satya N.
    Schehr, Gregory
    [J]. CHAOS SOLITONS & FRACTALS, 2015, 74 : 79 - 88
  • [3] Refined Large Deviation Principle for Branching Brownian Motion Conditioned to Have a Low Maximum
    Bai, Yanjia
    Hartung, Lisa
    [J]. ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2022, 19 (01): : 859 - 880
  • [4] Maximum of branching Brownian motion in a periodic environment
    Lubetzky, Eyal
    Thornett, Chris
    Zeitouni, Ofer
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2022, 58 (04): : 2065 - 2093
  • [5] On a conditioned Brownian motion and a maximum principle on the disk
    Dall'Acqua, A
    Grunau, HC
    Sweers, GH
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2004, 93 (1): : 309 - 329
  • [6] On a conditioned Brownian motion and a maximum principle on the disk
    A. Dall'Acqua
    H. -C. Grunau
    G. H. Sweers
    [J]. Journal d’Analyse Mathématique, 2004, 93 : 309 - 329
  • [7] Lower deviation for the maximum of two-speed branching Brownian motion
    Chen, Zengcai
    [J]. STATISTICS & PROBABILITY LETTERS, 2024, 206
  • [8] Small Values of the Maximum for the Integral of Fractional Brownian Motion
    G. Molchan
    A. Khokhlov
    [J]. Journal of Statistical Physics, 2004, 114 : 923 - 946
  • [9] Maximum of a Fractional Brownian Motion: Probabilities of Small Values
    G. M. Molchan
    [J]. Communications in Mathematical Physics, 1999, 205 : 97 - 111
  • [10] Maximum of a fractional Brownian motion: Probabilities of small values
    Molchan, GM
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 205 (01) : 97 - 111