Effect on Landau damping rates for a non-Maxwellian distribution function consisting of two electron populations

被引:0
|
作者
M.N.S.Qureshi [1 ,2 ]
S.Sehar [2 ]
H.A.Shah [2 ]
J.B.Cao [1 ]
机构
[1] Space Science Institute,Beihang University
[2] Department of Physics,Government College University
基金
中国国家自然科学基金;
关键词
Landau damping; Langmuir waves; two electron populations; non-Maxwellian distribution function;
D O I
暂无
中图分类号
O53 [等离子体物理学];
学科分类号
070204 ;
摘要
In many physical situations where a laser or electron beam passes through a dense plasma,hot low-density electron populations can be generated,resulting in a particle distribution function consisting of a dense cold population and a small hot population.Presence of such low-density electron distributions can alter the wave damping rate.A kinetic model is employed to study the Landau damping of Langmuir waves when a small hot electron population is present in the dense cold electron population with non-Maxwellian distribution functions.Departure of plasma from Maxwellian distributions significantly alters the damping rates as compared to the Maxwellian plasma.Strong damping is found for highly nonMaxwellian distributions as well as plasmas with a higher density and hot electron population.Existence of weak damping is also established when the distribution contains broadened flat tops at the low energies or tends to be Maxwellian.These results may be applied in both experimental and space physics regimes.
引用
收藏
页码:362 / 369
页数:8
相关论文
共 50 条
  • [21] A new gate current model accounting for a non-Maxwellian electron energy distribution function
    Gehring, A
    Grasser, T
    Kosina, H
    Selberherr, S
    SISPAD 2002: INTERNATIONAL CONFERENCE ON SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES, 2002, : 235 - 238
  • [22] Effects of Non-Maxwellian Electron Distribution Function to the Propagation Coefficients of Electromagnetic Waves in Plasma
    Li, Jinming
    Wang, Ying
    Wei, Junjie
    Yuan, Chengxun
    Zhou, Zhongxiang
    Wang, Xiaoou
    Kudryavtsev, A. A.
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2019, 47 (01) : 100 - 103
  • [23] Dust-ion-acoustic solitons in plasmas with non-Maxwellian electron distribution function
    Pajouh, H. Hakimi
    Abbasi, H.
    PHYSICS OF PLASMAS, 2008, 15 (10)
  • [24] A model of non-Maxwellian electron distribution function for the analysis of ECE data in JET discharges
    Giruzzi, G.
    Fontana, M.
    Orsitto, F. P.
    de la Luna, E.
    Dumont, R.
    Figini, L.
    Maslov, M.
    Mazzi, S.
    Schmuck, S.
    Senni, L.
    Sozzi, C.
    Challis, C.
    Frigione, D.
    Garcia, J.
    Garzotti, L.
    Hobirk, J.
    Kappatou, A.
    Keeling, D.
    Lerche, E.
    Maggi, C.
    Mailloux, J.
    Rimini, F.
    Van Eester, D.
    21ST JOINT WORKSHOP ON ELECTRON CYCLOTRON EMISSION AND ELECTRON CYCLOTRON RESONANCE HEATING, EC21, 2023, 277
  • [25] Electron cyclotron emission by non-Maxwellian bulk distribution functions
    Krivenski, V
    FUSION ENGINEERING AND DESIGN, 2001, 53 (1-4) : 23 - 33
  • [26] The inversion of incoherent scatter spectra with a non-Maxwellian electron distribution
    Xu, Bin
    Wang, Zhange
    Xue, Kun
    Wu, Jian
    Wu, Zhensen
    Wu, Jun
    Yan, Yubo
    JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2010, 72 (5-6) : 492 - 497
  • [27] THE IONIZATION BALANCE OF THE FE IN THE SOLAR CORONA FOR A NON-MAXWELLIAN ELECTRON-DISTRIBUTION FUNCTION
    DZIFCAKOVA, E
    SOLAR PHYSICS, 1992, 140 (02) : 247 - 267
  • [28] NON-MAXWELLIAN FORM OF ELECTRON VELOCITY DISTRIBUTION IN NITROGEN PLASMAS
    NOON, JH
    BLASZUK, PR
    HOLT, EH
    JOURNAL OF APPLIED PHYSICS, 1968, 39 (01) : 9 - &
  • [29] Investigation of the Boltzmann relation in plasmas with non-Maxwellian electron distribution
    Kim, June Young
    Lee, Hyo-Chang
    Kim, Dong-Hwan
    Kim, Yu-Sin
    Kim, Young-Cheol
    Chung, Chin-Wook
    PHYSICS OF PLASMAS, 2014, 21 (02)
  • [30] Landau damping and kinetic instability in non-Maxwellian highly electronegative multi-species plasma
    Arshad, Kashif
    Mirza, Arshad M.
    ASTROPHYSICS AND SPACE SCIENCE, 2014, 349 (02) : 753 - 763