Effect on Landau damping rates for a non-Maxwellian distribution function consisting of two electron populations

被引:0
|
作者
M.N.S.Qureshi [1 ,2 ]
S.Sehar [2 ]
H.A.Shah [2 ]
J.B.Cao [1 ]
机构
[1] Space Science Institute,Beihang University
[2] Department of Physics,Government College University
基金
中国国家自然科学基金;
关键词
Landau damping; Langmuir waves; two electron populations; non-Maxwellian distribution function;
D O I
暂无
中图分类号
O53 [等离子体物理学];
学科分类号
070204 ;
摘要
In many physical situations where a laser or electron beam passes through a dense plasma,hot low-density electron populations can be generated,resulting in a particle distribution function consisting of a dense cold population and a small hot population.Presence of such low-density electron distributions can alter the wave damping rate.A kinetic model is employed to study the Landau damping of Langmuir waves when a small hot electron population is present in the dense cold electron population with non-Maxwellian distribution functions.Departure of plasma from Maxwellian distributions significantly alters the damping rates as compared to the Maxwellian plasma.Strong damping is found for highly nonMaxwellian distributions as well as plasmas with a higher density and hot electron population.Existence of weak damping is also established when the distribution contains broadened flat tops at the low energies or tends to be Maxwellian.These results may be applied in both experimental and space physics regimes.
引用
收藏
页码:362 / 369
页数:8
相关论文
共 50 条
  • [41] Sheath Properties in Two-Temperature Non-Maxwellian Electron Plasmas
    Hatami, Mohammd Mohsen
    Tribeche, M.
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2018, 46 (04) : 868 - 874
  • [42] Dust heating by Alfven waves using non-Maxwellian distribution function
    Zubia, K.
    Shah, H. A.
    Yoon, P. H.
    PHYSICS OF PLASMAS, 2015, 22 (08)
  • [43] Linear analysis of bump on tail instability with non-Maxwellian distribution function
    Noreen N.
    Shiekh A.
    Habumugisha I.
    Zaheer S.
    Shah H.A.
    Plasma Research Express, 2020, 2 (02):
  • [44] THE EFFECT OF A NON-MAXWELLIAN ELECTRON-DISTRIBUTION ON OXYGEN AND IRON IONIZATION BALANCES IN THE SOLAR CORONA
    OWOCKI, SP
    SCUDDER, JD
    ASTROPHYSICAL JOURNAL, 1983, 270 (02): : 758 - 768
  • [45] The auroral O+ non-Maxwellian velocity distribution function revisited
    Hubert, D
    Leblanc, F
    ANNALES GEOPHYSICAE-ATMOSPHERES HYDROSPHERES AND SPACE SCIENCES, 1997, 15 (02): : 249 - 254
  • [46] THE ORIGIN OF NON-MAXWELLIAN SOLAR WIND ELECTRON VELOCITY DISTRIBUTION FUNCTION: CONNECTION TO NANOFLARES IN THE SOLAR CORONA
    Che, H.
    Goldstein, M. L.
    ASTROPHYSICAL JOURNAL LETTERS, 2014, 795 (02)
  • [47] Determination of electron energy distribution function shape for non-Maxwellian plasmas using floating harmonics method
    Huh, Sung-Ryul
    Kim, Nam-Kyun
    Roh, Hyun-Joon
    Choi, Myung-Sun
    Lee, Seok-Hwan
    Kim, Gon-Ho
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2015, 48 (02)
  • [48] ELECTROSTATIC NOISE IN NON-MAXWELLIAN PLASMAS - FLAT-TOP DISTRIBUTION FUNCTION
    CHATEAU, YF
    MEYERVERNET, N
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1989, 94 (A11): : 15407 - 15414
  • [49] Effect of κ-deformed Kaniadakis distribution on the modulational instability of electron-acoustic waves in a non-Maxwellian plasma
    Irshad, M.
    Ata-ur-Rahman, Muhammad
    Khalid, Muhammad
    Khan, S.
    Alotaibi, B. M.
    El-Sherif, L. S.
    El-Tantawy, S. A.
    PHYSICS OF FLUIDS, 2023, 35 (10)
  • [50] ALFVEN WAVE INSTABILITY BASED ON TEMPERATURE ANISOTROPY WITH NON-MAXWELLIAN DISTRIBUTION FUNCTION
    Qureshi, M. N. S.
    Saeed, Sundas
    Shah, H. A.
    PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2013, (01): : 102 - 104