A model of non-Maxwellian electron distribution function for the analysis of ECE data in JET discharges

被引:1
|
作者
Giruzzi, G. [1 ]
Fontana, M. [2 ]
Orsitto, F. P. [3 ]
de la Luna, E. [4 ]
Dumont, R. [1 ]
Figini, L. [5 ]
Maslov, M. [2 ]
Mazzi, S. [6 ]
Schmuck, S. [5 ]
Senni, L. [3 ]
Sozzi, C. [5 ]
Challis, C. [2 ]
Frigione, D. [3 ]
Garcia, J. [1 ]
Garzotti, L. [2 ]
Hobirk, J. [7 ]
Kappatou, A. [7 ]
Keeling, D. [2 ]
Lerche, E. [2 ]
Maggi, C. [2 ]
Mailloux, J. [2 ]
Rimini, F. [2 ]
Van Eester, D. [8 ]
机构
[1] CEA, IRFM, F-13108 St Paul Les Durance, France
[2] United Kingdom Atom Energy Author, Culham Ctr Fus Energy, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[3] CR Frascati, ENEA Dept Fus & Technol Nucl Safety, I-00044 Frascati, Italy
[4] CIEMAT, Natl Fus Lab, Madrid, Spain
[5] CNR, Ist Sci & Tecnol Plasmi, I-20125 Milan, Italy
[6] Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland
[7] Max Planck Inst Plasma Phys, D-85748 Garching, Germany
[8] LPP ERM KMS, Plasma Phys Lab, Brussels, Belgium
关键词
CYCLOTRON EMISSION;
D O I
10.1051/epjconf/202327703005
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Recent experiments performed in JET at high level of plasma heating, in preparation of, and during the DT campaign have shown significant discrepancies between electron temperature measurements by Thomson Scattering (TS) and Electron Cyclotron Emission (ECE). In order to perform a systematic analysis of this phenomenon, a simple model of bipolar distortion of the electron distribution function has been developed, allowing analytic calculation of the EC emission and absorption coefficients. Extensive comparisons of the modelled ECE spectra (at both the 2nd and the 3rd harmonic extraordinary mode) with experimental measurements display good agreement when bulk electron distribution distortions around 1-2 times the electron thermal velocity are used and prove useful for a first level of analysis of this effect.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] A new gate current model accounting for a non-Maxwellian electron energy distribution function
    Gehring, A
    Grasser, T
    Kosina, H
    Selberherr, S
    SISPAD 2002: INTERNATIONAL CONFERENCE ON SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES, 2002, : 235 - 238
  • [2] Nonlocal electron heat transport under the non-Maxwellian distribution function
    Li, Kai
    Huo, Wen Yi
    PHYSICS OF PLASMAS, 2020, 27 (06)
  • [3] Non-Maxwellian shape of electron distribution function in ion acoustic turbulence
    Farshi, E
    Fukuyama, T
    Matsukuma, M
    Kawai, Y
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2001, 29 (06) : 907 - 910
  • [4] EFFECTS OF NON-MAXWELLIAN ELECTRON ENERGY DISTRIBUTION IN LOW-VOLTAGE NEON DISCHARGES
    SHAW, DT
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1971, 16 (02): : 210 - &
  • [5] Effects of non-Maxwellian electron velocity distribution function on two-stream instability in low-pressure discharges
    Sydorenko, D.
    Smolyakov, A.
    Kaganovich, I.
    Raitses, Y.
    PHYSICS OF PLASMAS, 2007, 14 (01)
  • [6] Analytic non-Maxwellian electron velocity distribution function in a Hall discharge plasma
    Shagayda, Andrey
    Tarasov, Alexey
    PHYSICS OF PLASMAS, 2017, 24 (10)
  • [7] MICROWAVE-ABSORPTION IN STELLARATORS WITH A NON-MAXWELLIAN ELECTRON-DISTRIBUTION FUNCTION
    ALEJALDRE, C
    CASTEJON, F
    PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1989, 1 (11): : 2201 - 2206
  • [8] OBSERVATION OF NON-MAXWELLIAN ELECTRON VELOCITY DISTRIBUTION FUNCTION IN ALCATOR-C
    GONDHALEKAR, A
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (08): : 997 - 997
  • [9] Linear analysis of bump on tail instability with non-Maxwellian distribution function
    Noreen N.
    Shiekh A.
    Habumugisha I.
    Zaheer S.
    Shah H.A.
    Plasma Research Express, 2020, 2 (02):
  • [10] A wealth distribution model with a non-Maxwellian collision kernel
    Meng, Jun
    Zhou, Xia
    Lai, Shaoyong
    CHINESE PHYSICS B, 2024, 33 (07)