A model of non-Maxwellian electron distribution function for the analysis of ECE data in JET discharges

被引:1
|
作者
Giruzzi, G. [1 ]
Fontana, M. [2 ]
Orsitto, F. P. [3 ]
de la Luna, E. [4 ]
Dumont, R. [1 ]
Figini, L. [5 ]
Maslov, M. [2 ]
Mazzi, S. [6 ]
Schmuck, S. [5 ]
Senni, L. [3 ]
Sozzi, C. [5 ]
Challis, C. [2 ]
Frigione, D. [3 ]
Garcia, J. [1 ]
Garzotti, L. [2 ]
Hobirk, J. [7 ]
Kappatou, A. [7 ]
Keeling, D. [2 ]
Lerche, E. [2 ]
Maggi, C. [2 ]
Mailloux, J. [2 ]
Rimini, F. [2 ]
Van Eester, D. [8 ]
机构
[1] CEA, IRFM, F-13108 St Paul Les Durance, France
[2] United Kingdom Atom Energy Author, Culham Ctr Fus Energy, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[3] CR Frascati, ENEA Dept Fus & Technol Nucl Safety, I-00044 Frascati, Italy
[4] CIEMAT, Natl Fus Lab, Madrid, Spain
[5] CNR, Ist Sci & Tecnol Plasmi, I-20125 Milan, Italy
[6] Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland
[7] Max Planck Inst Plasma Phys, D-85748 Garching, Germany
[8] LPP ERM KMS, Plasma Phys Lab, Brussels, Belgium
关键词
CYCLOTRON EMISSION;
D O I
10.1051/epjconf/202327703005
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Recent experiments performed in JET at high level of plasma heating, in preparation of, and during the DT campaign have shown significant discrepancies between electron temperature measurements by Thomson Scattering (TS) and Electron Cyclotron Emission (ECE). In order to perform a systematic analysis of this phenomenon, a simple model of bipolar distortion of the electron distribution function has been developed, allowing analytic calculation of the EC emission and absorption coefficients. Extensive comparisons of the modelled ECE spectra (at both the 2nd and the 3rd harmonic extraordinary mode) with experimental measurements display good agreement when bulk electron distribution distortions around 1-2 times the electron thermal velocity are used and prove useful for a first level of analysis of this effect.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] NON-MAXWELLIAN ELECTRON EXCITATION IN HELIUM
    MACEDA, EL
    MILEY, GH
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1975, 20 (02): : 255 - 255
  • [22] GAS WITH A NON-MAXWELLIAN VELOCITY DISTRIBUTION
    MCFEE, R
    PHYSICAL REVIEW A, 1983, 27 (04): : 2233 - 2236
  • [23] Effect on Landau damping rates for a non-Maxwellian distribution function consisting of two electron populations
    M.N.S.Qureshi
    S.Sehar
    H.A.Shah
    J.B.Cao
    Chinese Physics B, 2013, (03) : 362 - 369
  • [24] Non-Maxwellian electron energy distribution function in a pulsed plasma modeled with dual effective temperatures
    Adams, S. F.
    Miles, J. A.
    Demidov, V. I.
    PHYSICS OF PLASMAS, 2017, 24 (05)
  • [25] Effect on Landau damping rates for a non-Maxwellian distribution function consisting of two electron populations
    Qureshi, M. N. S.
    Sehar, S.
    Shah, H. A.
    Cao, J. B.
    CHINESE PHYSICS B, 2013, 22 (03)
  • [26] MODEL PREDICTIONS OF THE OCCURRENCE OF NON-MAXWELLIAN PLASMAS, AND ANALYSIS OF THEIR EFFECTS ON EISCAT DATA
    FARMER, AD
    LOCKWOOD, M
    FULLERROWELL, TJ
    SUVANTO, K
    LOVHAUG, UP
    JOURNAL OF ATMOSPHERIC AND TERRESTRIAL PHYSICS, 1988, 50 (4-5): : 487 - 499
  • [27] Whistler waves with electron temperature anisotropy and non-Maxwellian distribution functions
    Malik, M. Usman
    Masood, W.
    Qureshi, M. N. S.
    Mirza, Arshad M.
    AIP ADVANCES, 2018, 8 (05)
  • [28] Non-Maxwellian electron-energy distribution from cluster nanoplasmas
    Rajeev, R.
    Trivikram, T. Madhu
    Rishad, K. P. M.
    Krishnamurthy, M.
    PHYSICAL REVIEW A, 2013, 87 (05):
  • [29] Electron heat conduction under non-Maxwellian distribution in hohlraum simulation
    Huo, Wen Yi
    Lan, Ke
    Gu, Pei Jun
    Yong, Heng
    Zeng, Qing Hong
    PHYSICS OF PLASMAS, 2012, 19 (01)
  • [30] Simulation of hot-electron oxide tunneling current based on a non-Maxwellian electron energy distribution function
    Gehring, A
    Grasser, T
    Kosina, H
    Selberherr, S
    JOURNAL OF APPLIED PHYSICS, 2002, 92 (10) : 6019 - 6027