Parameter estimation method based on parameter function surface

被引:0
|
作者
BAO WeiMin [1 ,2 ]
ZHANG XiaoQin [1 ,2 ]
ZHAO LiPing [1 ,2 ]
机构
[1] State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Hohai University
[2] College of Hydrology and Water Resources,Hohai University
基金
国家自然科学基金重大项目; 中国国家自然科学基金; 中央高校基本科研业务费专项资金资助;
关键词
parameter estimation; objective function surface; parameter function surface; uniqueness theorem; intersection; Taylor series;
D O I
暂无
中图分类号
P334.92 [];
学科分类号
摘要
By analyzing the structure of the objective function based on error sum of squares and the information provided by the objective function, the essential problems in the current parameter estimation methods are summarized: (1) the information extracted from the objective function based on error sum of squares is unreasonable or even wrong for parameter estimation; and (2) the surface of the objective function based on error sum of squares is more complex than that of the parameter function, which indicates that the optimal parameter values should be searched on the surface of the parameter function instead of the objective function. This paper proposes the concept of sample intersection and demonstrates the uniqueness theorem of intersection point (namely the uniqueness of optimal parameter values). According to the characteristics of parameter function surface and Taylor series expansion, a parameter estimation method based on the sample intersection information extracted from parameter function surface (PFS method) was constructed. The results of theoretical analysis and practical application show that the proposed PFS method can avoid the problems in the current automatic parameter calibration, and has fast convergence rate and good performance in parameter calibration.
引用
收藏
页码:1485 / 1498
页数:14
相关论文
共 50 条
  • [41] Function Estimation in Inverse Heat Transfer Problems Based on Parameter Estimation Approach
    Mohebbi, Farzad
    ENERGIES, 2020, 13 (17)
  • [42] An Online Parameter Estimation Method Based on Adaptive Unscented Kalman Filter for Unmanned Surface Vessel
    Shen, Han
    Lv, Yuezu
    Zhou, Jun
    Wang, Linan
    Feng, Yuting
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 2584 - 2589
  • [43] An Efficient Method of Parameter and Quantile Estimation for the Three-Parameter Weibull Distribution Based on Statistics Invariant to Unknown Location Parameter
    Nagatsuka, Hideki
    Balakrishnan, N.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2015, 44 (02) : 295 - 318
  • [44] A method for surface roughness parameter estimation in passive microwave remote sensing
    Xingming Zheng
    Kai Zhao
    Chinese Geographical Science, 2010, 20 : 345 - 352
  • [45] An Iterative Method for Parameter Estimation of the Three-Parameter Weibull Distribution Based on a Small Sample Size with a Fixed Shape Parameter
    Yang, Xiaoyu
    Xie, Liyang
    Zhao, Bingfeng
    Kong, Xiangwei
    Wu, Ningxiang
    INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS, 2022, 22 (12)
  • [46] A Method for Surface Roughness Parameter Estimation in Passive Microwave Remote Sensing
    ZHENG Xingming1
    2.Graduate University of the Chinese Academy of Sciences
    Chinese Geographical Science, 2010, 20 (04) : 345 - 352
  • [47] A Method for Surface Roughness Parameter Estimation in Passive Microwave Remote Sensing
    Zheng Xingming
    Zhao Kai
    CHINESE GEOGRAPHICAL SCIENCE, 2010, 20 (04) : 345 - 352
  • [48] Parameter estimation of analog circuits based on the fractional wavelet method
    邓勇
    张禾
    Journal of Semiconductors, 2015, (03) : 131 - 138
  • [49] A method of modal parameter estimation based on electromagnetic vibration exciter
    Hong, Jianfeng
    Wang, Shanming
    Sun, Yuguang
    Cao, Haixiang
    2019 IEEE INTERNATIONAL ELECTRIC MACHINES & DRIVES CONFERENCE (IEMDC), 2019, : 1126 - 1129
  • [50] Model Parameter Online Identification Based SOC Estimation Method
    Liu F.
    Ma J.
    Su W.-X.
    He M.-W.
    Su, Wei-Xing (suweixing@tiangong.edu.cn), 1600, Northeast University (41): : 1543 - 1549