Parameter estimation method based on parameter function surface

被引:0
|
作者
BAO WeiMin [1 ,2 ]
ZHANG XiaoQin [1 ,2 ]
ZHAO LiPing [1 ,2 ]
机构
[1] State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Hohai University
[2] College of Hydrology and Water Resources,Hohai University
基金
国家自然科学基金重大项目; 中央高校基本科研业务费专项资金资助; 中国国家自然科学基金;
关键词
parameter estimation; objective function surface; parameter function surface; uniqueness theorem; intersection; Taylor series;
D O I
暂无
中图分类号
P334.92 [];
学科分类号
081501 ;
摘要
By analyzing the structure of the objective function based on error sum of squares and the information provided by the objective function, the essential problems in the current parameter estimation methods are summarized: (1) the information extracted from the objective function based on error sum of squares is unreasonable or even wrong for parameter estimation; and (2) the surface of the objective function based on error sum of squares is more complex than that of the parameter function, which indicates that the optimal parameter values should be searched on the surface of the parameter function instead of the objective function. This paper proposes the concept of sample intersection and demonstrates the uniqueness theorem of intersection point (namely the uniqueness of optimal parameter values). According to the characteristics of parameter function surface and Taylor series expansion, a parameter estimation method based on the sample intersection information extracted from parameter function surface (PFS method) was constructed. The results of theoretical analysis and practical application show that the proposed PFS method can avoid the problems in the current automatic parameter calibration, and has fast convergence rate and good performance in parameter calibration.
引用
收藏
页码:1485 / 1498
页数:14
相关论文
共 50 条
  • [31] LAD PARAMETER ESTIMATION of SaS BASED on SAMPLE CHARACTERISTIC FUNCTION
    陈高波
    [J]. 科技信息, 2010, (25) : 444 - 444
  • [32] PARAMETER-ESTIMATION BASED UPON NONPARAMETRIC FUNCTION ESTIMATORS
    LARICCIA, VN
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1984, 13 (22) : 2771 - 2792
  • [33] Empirical cumulant function based parameter estimation in stable laws
    Krutto, Annika
    [J]. ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2018, 22 (02): : 311 - 338
  • [34] Parameter Estimation of LFM Signals Based on Scaled Ambiguity Function
    Jin, Yan
    Duan, Pengting
    Ji, Hongbing
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2016, 35 (12) : 4445 - 4462
  • [35] Parameter Estimation of LFM Signals Based on Scaled Ambiguity Function
    Yan Jin
    Pengting Duan
    Hongbing Ji
    [J]. Circuits, Systems, and Signal Processing, 2016, 35 : 4445 - 4462
  • [36] Characteristic Function Based Parameter Estimation for Ocean Ambient Noise
    Zhang, Xuebo
    Tan, Cheng
    Ying, Wenwei
    [J]. 2018 IEEE 3RD INTERNATIONAL CONFERENCE ON IMAGE, VISION AND COMPUTING (ICIVC), 2018, : 817 - 820
  • [37] Parameter estimation for a linear velocity function
    Stovas, A
    Ursin, B
    [J]. RUSSIAN GEOLOGY AND GEOPHYSICS, 2006, 47 (05) : 582 - 586
  • [38] LISA response function and parameter estimation
    Vecchio, A
    Wickham, EDL
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (05) : S661 - S664
  • [39] Automotive applications of the enhanced mode indicator function parameter estimation method
    Li, SM
    Fladung, WA
    Phillips, AW
    Brown, DL
    [J]. IMAC - PROCEEDINGS OF THE 16TH INTERNATIONAL MODAL ANALYSIS CONFERENCE, VOLS 1 AND 2, 1998, 3243 : 36 - 44
  • [40] Estimation of shift parameter of headway distributions using crosscorrelation function method
    Chen, J
    Gupta, J
    [J]. IEEE CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, 1997, : 741 - 746