Let T be a tree and f be a continuous map from T into itself. We show mainly in this paper that a point x of T is an w-limit point of f if and only if every open neighborhood of x in T contains at least nx + 1 points of some trajectory, where nx equals the number of connected components of T \ {x}. Then, for any open subset G w(f) in T, there exists a positive integer m = m(G) such that at most m points of any trajectory lie outside G.This result is a generalization of the related result for maps of the interval.
机构:
CHINESE ACAD SCI,INST BIOPHYS,LAB VISUAL INFORMAT PROC,BEIJING 100101,PEOPLES R CHINACHINESE ACAD SCI,INST BIOPHYS,LAB VISUAL INFORMAT PROC,BEIJING 100101,PEOPLES R CHINA
Sun, HJ
Liu, L
论文数: 0引用数: 0
h-index: 0
机构:
CHINESE ACAD SCI,INST BIOPHYS,LAB VISUAL INFORMAT PROC,BEIJING 100101,PEOPLES R CHINACHINESE ACAD SCI,INST BIOPHYS,LAB VISUAL INFORMAT PROC,BEIJING 100101,PEOPLES R CHINA
Liu, L
Guo, A
论文数: 0引用数: 0
h-index: 0
机构:
CHINESE ACAD SCI,INST BIOPHYS,LAB VISUAL INFORMAT PROC,BEIJING 100101,PEOPLES R CHINACHINESE ACAD SCI,INST BIOPHYS,LAB VISUAL INFORMAT PROC,BEIJING 100101,PEOPLES R CHINA